Class CC¶
Defined in File cc.hpp
Class Documentation¶
-
class CC¶
CC is a derivation engine for the coupled-cluster method.
Public Types
Public Functions
-
explicit CC(size_t N, Ansatz ansatz = Ansatz::T, bool screen = true, bool use_topology = true)¶
constructs CC engine
- Parameters:
N – coupled cluster excitation rank
ansatz – the type of CC ansatz
screen – if true, uses Operator level screening before applying WickTheorem
use_topology – if true, uses topological optimizations in WickTheorem
-
bool unitary() const¶
- Returns:
true if the ansatz is unitary
-
bool screen() const¶
- Returns:
whether screening is on or not
-
bool use_topology() const¶
- Returns:
whether topological optimization is used in WickTheorem
-
std::vector<ExprPtr> t(size_t commutator_rank = 4, size_t pmax = std::numeric_limits<size_t>::max(), size_t pmin = 0)¶
derives t amplitude equations, \( \langle P|\bar{H}|0 \rangle = 0 \)
- Parameters:
commutator_rank – rank of commutators included in \( \bar{H} \) ; must be specified for unitary ansatz and/or Hamiltonians with particle rank != 2
pmax – highest particle rank of the projector manifold
\f \langle P | \f; the default value is to use the cluster operator rank of this enginepmin – lowest particle rank of the projector manifold
\f \langle P | \f; the default value is 0
- Returns:
vector of t amplitude equations, with element
kcontaining equation \( \langle k |\bar{H}|0 \rangle = 0 \) forkin the [pmin,pmax] range, and null value otherwise
- std::vector< ExprPtr > λ (size_t commutator_rank=4)
derives λ amplitude equations, \( \langle 0| (1 + \hat{\Lambda}) \frac{d \bar{H}}{d \hat{T}_P} |0 \rangle = 0 \)
- Parameters:
commutator_rank – rank of commutators included in \( \bar{H} \) ; must be specified for unitary ansatz and/or Hamiltonians with particle rank != 2
- Returns:
vector of λ amplitude equations, with element
kcontaining equation \( \langle 0| (1 + \hat{\Lambda}) \frac{d \bar{H}}{d \hat{T}_k} |0 \rangle = 0 \) forkin the [1,N] range; element 0 is always null
-
std::vector<ExprPtr> t_pt(size_t rank = 1, size_t order = 1, std::optional<size_t> nbatch = std::nullopt)¶
derives perturbed t amplitude equations
- Parameters:
rank – rank of perturbation operator. r = 1 means one-body perturbation operator
order – order of perturbation
nbatch – optional batching index rank for perturbation operators
- Pre:
rank==1 && order==1, only first order perturbation and one-body perturbation operator is supported now- Returns:
std::vector of perturbed t amplitude equations
- std::vector< ExprPtr > λ_pt (size_t rank=1, size_t order=1, std::optional< size_t > nbatch=std::nullopt)
derives perturbed λ amplitude equations
- Parameters:
rank – rank of perturbation operator. r = 1 means one-body perturbation operator
order – order of perturbation
nbatch – optional batching index rank for perturbation operators
- Pre:
rank==1 && order==1, only first order perturbation and one-body perturbation operator is supported now- Returns:
std::vector of perturbed λ amplitude equations
- std::vector< ExprPtr > eom_r (nₚ np, nₕ nh)
derives right-side sigma equations for EOM-CC
- Parameters:
np – number of particle creators in R operator
nh – number of hole creators in R operator
- Returns:
vector of right side sigma equations, element 0 is always null
- std::vector< ExprPtr > eom_l (nₚ np, nₕ nh)
derives left-side sigma equations for EOM-CC
- Parameters:
np – number of particle annihilators in L operator
nh – number of hole annihilators in L operator
- Returns:
vector of left side sigma equations, element 0 is always null
-
explicit CC(size_t N, Ansatz ansatz = Ansatz::T, bool screen = true, bool use_topology = true)¶