Class CC¶
Defined in File cc.hpp
Class Documentation¶
-
class CC¶
CC is a derivation engine for the coupled-cluster method.
Public Types
Public Functions
-
CC(size_t N, Ansatz ansatz = Ansatz::T)¶
constructs CC engine
- Parameters:
N – coupled cluster excitation rank
ansatz – the type of CC ansatz
-
bool unitary() const¶
- Returns:
true if the ansatz is unitary
-
ExprPtr sim_tr(ExprPtr expr, size_t r)¶
derives similarity-transformed expressions of mpbt::Operators
- Parameters:
expr – expression to be transformed
r – order of truncation
- Pre:
expr should be composed of mbpt::Operators
- Returns:
transformed expression
-
std::vector<ExprPtr> t(size_t commutator_rank = 4, size_t pmax = std::numeric_limits<size_t>::max(), size_t pmin = 0)¶
derives t amplitude equations, \( \langle P|\bar{H}|0 \rangle = 0 \)
- Parameters:
commutator_rank – rank of commutators included in \( \bar{H} \) ; must be specified for unitary ansatz and/or Hamiltonians with particle rank != 2
pmax – highest particle rank of the projector manifold
\f \langle P | \f
; the default value is to use the cluster operator rank of this enginepmin – lowest particle rank of the projector manifold
\f \langle P | \f
; the default value is 0
- Returns:
vector of t amplitude equations, with element
k
containing equation \( \langle k |\bar{H}|0 \rangle = 0 \) fork
in the [pmin
,pmax
] range, and null value otherwise
- std::vector< ExprPtr > λ (size_t commutator_rank=4)
derives λ amplitude equations, \( \langle 0| (1 + \hat{\Lambda}) \frac{d \bar{H}}{d \hat{T}_P} |0 \rangle = 0 \)
- Parameters:
commutator_rank – rank of commutators included in \( \bar{H} \) ; must be specified for unitary ansatz and/or Hamiltonians with particle rank != 2
- Returns:
vector of λ amplitude equations, with element
k
containing equation \( \langle 0| (1 + \hat{\Lambda}) \frac{d \bar{H}}{d \hat{T}_k} |0 \rangle = 0 \) fork
in the [1,N] range; element 0 is always null
-
std::vector<ExprPtr> t_pt(size_t order = 1, size_t rank = 1)¶
derives perturbed t amplitude equations
- Parameters:
order – order of perturbation
rank – rank of perturbation operator. r = 1 means one-body perturbation operator
- Pre:
rank==1 && order==1
, only first order perturbation and one-body perturbation operator is supported now- Returns:
std::vector of perturbed t amplitude equations
- std::vector< ExprPtr > λ_pt (size_t order=1, size_t rank=1)
derives perturbed λ amplitude equations
- Parameters:
order – order of perturbation
rank – rank of perturbation operator. r = 1 means one-body perturbation operator
- Pre:
rank==1 && order==1
, only first order perturbation and one-body perturbation operator is supported now- Returns:
std::vector of perturbed λ amplitude equations
- std::vector< ExprPtr > eom_r (nₚ np, nₕ nh)
derives right-side sigma equations for EOM-CC
- Parameters:
np – number of particle creators in R operator
nh – number of hole creators in R operator
- Returns:
vector of right side sigma equations, element 0 is always null
- std::vector< ExprPtr > eom_l (nₚ np, nₕ nh)
derives left-side sigma equations for EOM-CC
- Parameters:
np – number of particle annihilators in L operator
nh – number of hole annihilators in L operator
- Returns:
vector of left side sigma equations, element 0 is always null
-
CC(size_t N, Ansatz ansatz = Ansatz::T)¶