Program Listing for File eval_expr.cpp¶
↰ Return to documentation for file (SeQuant/core/eval_expr.cpp
)
#include <SeQuant/core/attr.hpp>
#include <SeQuant/core/complex.hpp>
#include <SeQuant/core/container.hpp>
#include <SeQuant/core/context.hpp>
#include <SeQuant/core/eval_expr.hpp>
#include <SeQuant/core/expr.hpp>
#include <SeQuant/core/hash.hpp>
#include <SeQuant/core/index.hpp>
#include <SeQuant/core/tensor.hpp>
#include <SeQuant/core/wstring.hpp>
#include <range/v3/action.hpp>
#include <range/v3/algorithm.hpp>
#include <range/v3/functional.hpp>
#include <range/v3/iterator.hpp>
#include <range/v3/view.hpp>
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <string_view>
#include <type_traits>
#include <utility>
#include <vector>
namespace sequant {
namespace {
size_t hash_terminal_tensor(Tensor const&) noexcept;
size_t hash_imed(EvalExpr const&, EvalExpr const&, EvalOp) noexcept;
ExprPtr make_imed(EvalExpr const&, EvalExpr const&, EvalOp) noexcept;
bool is_tot(Tensor const& t) noexcept {
return ranges::any_of(t.const_braket(), &Index::has_proto_indices);
}
std::wstring_view const var_label = L"Z";
} // namespace
NestedTensorIndices::NestedTensorIndices(const sequant::Tensor& tnsr) {
using ranges::views::join;
using ranges::views::transform;
auto append_unique = [](auto& cont, auto const& el) {
if (!ranges::contains(cont, el)) cont.emplace_back(el);
};
for (Index const& ix : tnsr.const_braket())
append_unique(ix.has_proto_indices() ? inner : outer, ix);
for (Index const& ix :
tnsr.const_braket() | transform(&Index::proto_indices) | join)
append_unique(outer, ix);
}
std::string EvalExpr::braket_annot() const noexcept {
if (!is_tensor()) return {};
// given an iterable of sequant::Index objects, returns a string made
// of their full labels separated by comma
// eg. (a_1^{i_1,i_2},a_2^{i_2,i_3}) -> "a_1i_1i_2,a_2i_2i_3"
// eg. (i_1, i_2) -> "i_1,i_2"
auto annot = [](auto&& ixs) -> std::string {
using namespace ranges::views;
auto full_labels = ixs //
| transform(&Index::full_label) //
| transform([](auto&& fl) { //
return sequant::to_string(fl);
});
return full_labels //
| intersperse(std::string{","}) //
| join //
| ranges::to<std::string>;
};
auto nested = NestedTensorIndices{as_tensor()};
return nested.inner.empty() //
? annot(nested.outer)
: annot(nested.outer) + ";" + annot(nested.inner);
}
size_t EvalExpr::global_id_{};
EvalExpr::EvalExpr(Tensor const& tnsr)
: op_type_{EvalOp::Id},
result_type_{ResultType::Tensor},
hash_value_{hash_terminal_tensor(tnsr)},
id_{},
expr_{tnsr.clone()},
tot_{is_tot(tnsr)} {}
EvalExpr::EvalExpr(Constant const& c)
: op_type_{EvalOp::Id},
result_type_{ResultType::Scalar},
hash_value_{hash::value(c)},
id_{},
expr_{c.clone()},
tot_{false} {}
EvalExpr::EvalExpr(Variable const& v)
: op_type_{EvalOp::Id},
result_type_{ResultType::Scalar},
hash_value_{hash::value(v)},
id_{},
expr_{v.clone()},
tot_{false} {}
EvalExpr::EvalExpr(EvalExpr const& left, EvalExpr const& right, EvalOp op)
: op_type_{op},
hash_value_{hash_imed(left, right, op)},
id_{++global_id_},
expr_{make_imed(left, right, op)} {
result_type_ = expr_->is<Tensor>() ? ResultType::Tensor : ResultType::Scalar;
tot_ = expr_->is<Tensor>() && is_tot(expr_->as<Tensor>());
}
EvalOp EvalExpr::op_type() const noexcept { return op_type_; }
ResultType EvalExpr::result_type() const noexcept { return result_type_; }
size_t EvalExpr::hash_value() const noexcept { return hash_value_; }
size_t EvalExpr::id() const noexcept { return id_; }
ExprPtr EvalExpr::expr() const noexcept { return expr_; }
bool EvalExpr::tot() const noexcept { return tot_; }
std::wstring EvalExpr::to_latex() const noexcept { return expr_->to_latex(); }
bool EvalExpr::is_tensor() const noexcept {
return expr().is<Tensor>() && result_type() == ResultType::Tensor;
}
bool EvalExpr::is_scalar() const noexcept { return !is_tensor(); }
bool EvalExpr::is_constant() const noexcept {
return expr().is<Constant>() && result_type() == ResultType::Scalar;
}
bool EvalExpr::is_variable() const noexcept {
return expr().is<Variable>() && result_type() == ResultType::Scalar;
}
Tensor const& EvalExpr::as_tensor() const noexcept {
return expr().as<Tensor>();
}
Constant const& EvalExpr::as_constant() const noexcept {
return expr().as<Constant>();
}
Variable const& EvalExpr::as_variable() const noexcept {
return expr().as<Variable>();
}
std::string EvalExpr::label() const noexcept {
if (is_tensor())
return to_string(as_tensor().label()) + "(" + braket_annot() + ")";
else if (is_constant()) {
auto const& c = as_constant();
auto real = Constant{c.value().real()}.value<double>();
auto imag = Constant{c.value().imag()}.value<double>();
assert(real != 0 || imag != 0);
std::string r = std::to_string(real);
std::string i = std::to_string(imag);
if (real == 0) return i;
if (imag == 0) return r;
return "(" + r + "," + i + ")";
} else {
assert(is_variable());
return to_string(as_variable().label());
}
}
namespace {
template <typename T>
size_t hash_braket(T const& bk) noexcept {
size_t h = 0;
for (auto const& idx : bk) {
hash::combine(h, hash::value(idx.space().type().to_int32()));
hash::combine(h, hash::value(idx.space().qns().to_int32()));
if (idx.has_proto_indices()) {
hash::combine(h, hash::value(idx.proto_indices().size()));
for (auto&& i : idx.proto_indices())
hash::combine(h, hash::value(i.label()));
}
}
return h;
}
size_t hash_tensor_pair_topology(Tensor const& t1, Tensor const& t2) noexcept {
using ranges::views::enumerate;
size_t h = 0;
for (auto&& [pos1, idx1] : t1.const_braket() | enumerate)
for (auto&& [pos2, idx2] : t2.const_braket() | enumerate)
if (idx1.label() == idx2.label())
hash::combine(h, hash::value(std::pair(pos1, pos2)));
return h;
}
size_t hash_terminal_tensor(Tensor const& tnsr) noexcept {
size_t h = 0;
hash::combine(h, hash::value(tnsr.label()));
hash::combine(h, hash_braket(tnsr.const_braket()));
return h;
}
size_t hash_imed(EvalExpr const& left, EvalExpr const& right,
EvalOp op) noexcept {
size_t h = 0;
hash::combine(h, hash::value(op));
auto lh = hash::value(left);
auto rh = hash::value(right);
hash::combine(h, lh < rh ? lh : rh);
hash::combine(h, lh < rh ? rh : lh);
if (left.result_type() == ResultType::Tensor &&
right.result_type() == ResultType::Tensor)
hash::combine(h, hash_tensor_pair_topology(left.expr()->as<Tensor>(),
right.expr()->as<Tensor>()));
return h;
}
std::pair<container::svector<Index>, // bra
container::svector<Index> // ket
>
target_braket(Tensor const& t1, Tensor const& t2) noexcept {
using ranges::contains;
using ranges::views::concat;
using ranges::views::filter;
using idx_container = container::svector<Index>;
// find contracted indices
const auto contracted_indices =
concat(t1.bra() | filter([&](const auto& idx) {
return contains(t2.ket(), idx);
}),
t1.ket() | filter([&](const auto& idx) {
return contains(t2.bra(), idx);
})) |
ranges::to<idx_container>();
// combine free bra indices
const auto result_bra = concat(t1.bra() | filter([&](const auto& idx) {
return !contains(contracted_indices, idx);
}),
t2.bra() | filter([&](const auto& idx) {
return !contains(contracted_indices, idx);
})) |
ranges::to<idx_container>();
// combine free ket indices
const auto result_ket = concat(t1.ket() | filter([&](const auto& idx) {
return !contains(contracted_indices, idx);
}),
t2.ket() | filter([&](const auto& idx) {
return !contains(contracted_indices, idx);
})) |
ranges::to<idx_container>();
return std::make_pair(result_bra, result_ket);
}
Symmetry tensor_symmetry_sum(EvalExpr const& left,
EvalExpr const& right) noexcept {
auto const& t1 = left.expr()->as<Tensor>();
auto const& t2 = right.expr()->as<Tensor>();
auto sym1 = t1.symmetry();
auto sym2 = t2.symmetry();
if (sym1 == sym2)
return sym1; // sum of symm/symm or antisymm/antisymm tensors
// sum of one symmetric and one antisymmetric tensor
if (sym1 != sym2 && sym1 != Symmetry::nonsymm && sym2 != Symmetry::nonsymm)
return Symmetry::symm;
return Symmetry::nonsymm;
}
Symmetry tensor_symmetry_prod(EvalExpr const& left,
EvalExpr const& right) noexcept {
using index_set_t = container::set<Index, Index::LabelCompare>;
// HELPER LAMBDA
// check if all the indices in cont1 are in cont2 AND vice versa
auto all_common_indices = [](const auto& cont1, const auto& cont2) -> bool {
return (cont1.size() == cont2.size()) &&
(cont1 | ranges::to<index_set_t>) ==
(cont2 | ranges::to<index_set_t>);
};
// //////
auto const& tnsr1 = left.expr()->as<Tensor>();
auto const& tnsr2 = right.expr()->as<Tensor>();
if (hash::value(left) == hash::value(right)) {
// potential outer product of the same tensor
auto const uniq_idxs =
ranges::views::concat(tnsr1.const_braket(), tnsr2.const_braket()) |
ranges::to<index_set_t>;
if (static_cast<std::size_t>(ranges::distance(uniq_idxs)) ==
tnsr1.const_braket().size() + tnsr2.const_braket().size()) {
// outer product confirmed
return Symmetry::antisymm;
}
}
// not an outer product of same tensor confirmed
auto imed_sym = Symmetry::invalid;
bool whole_bk_contracted = (all_common_indices(tnsr1.bra(), tnsr2.ket()) ||
all_common_indices(tnsr1.ket(), tnsr2.bra()));
auto sym1 = tnsr1.symmetry();
auto sym2 = tnsr2.symmetry();
assert(sym1 != Symmetry::invalid);
assert(sym2 != Symmetry::invalid);
if (whole_bk_contracted &&
!(sym1 == Symmetry::nonsymm || sym2 == Symmetry::nonsymm)) {
imed_sym = sym1 == sym2 ? sym1 : Symmetry::symm;
} else {
imed_sym = Symmetry::nonsymm;
}
assert(imed_sym != Symmetry::invalid);
return imed_sym;
}
ParticleSymmetry particle_symmetry(Symmetry s) noexcept {
return (s == Symmetry::symm || s == Symmetry::antisymm)
? ParticleSymmetry::symm
: ParticleSymmetry::nonsymm;
}
ExprPtr make_sum(EvalExpr const& left, EvalExpr const& right) noexcept {
assert(left.is_tensor() && right.is_tensor());
auto const& t1 = left.as_tensor();
auto const& t2 = right.as_tensor();
assert(t1.bra_rank() + t1.ket_rank() //
== t2.bra_rank() + t2.ket_rank() //
&& "differing ranks for summed tensors");
auto ts = tensor_symmetry_sum(left, right);
auto ps = particle_symmetry(ts);
auto bks = get_default_context().braket_symmetry();
return ex<Tensor>(L"I", t1.bra(), t1.ket(), ts, bks, ps);
}
ExprPtr make_prod(EvalExpr const& left, EvalExpr const& right) noexcept {
assert(left.is_tensor() && right.is_tensor());
auto const& t1 = left.as_tensor();
auto const& t2 = right.as_tensor();
auto [b, k] = target_braket(t1, t2);
if (b.empty() && k.empty()) {
// dot product
return ex<Variable>(var_label);
} else {
// regular tensor product
auto ts = tensor_symmetry_prod(left, right);
auto ps = particle_symmetry(ts);
auto bks = get_default_context().braket_symmetry();
return ex<Tensor>(L"I", bra(std::move(b)), ket(std::move(k)), ts, bks, ps);
}
}
ExprPtr make_imed(EvalExpr const& left, EvalExpr const& right,
EvalOp op) noexcept {
assert(op != EvalOp::Id);
auto lres = left.result_type();
auto rres = right.result_type();
if (lres == ResultType::Scalar && rres == ResultType::Scalar) {
// scalar (+|*) scalar
return ex<Variable>(var_label);
} else if (lres == ResultType::Scalar && rres == ResultType::Tensor) {
// scalar (*) tensor
assert(op == EvalOp::Prod && "scalar + tensor not supported");
auto const& t = right.expr()->as<Tensor>();
return ex<Tensor>(Tensor{L"I", t.bra(), t.ket(), t.symmetry(),
t.braket_symmetry(), t.particle_symmetry()});
} else if (lres == ResultType::Tensor && rres == ResultType::Scalar) {
// tensor (*) scalar
return make_imed(right, left, op);
} else {
// tensor (+|*) tensor
auto lh = hash::value(left);
auto rh = hash::value(right);
auto const& left_ = lh <= rh ? left : right;
auto const& right_ = lh <= rh ? right : left;
if (op == EvalOp::Sum) {
// tensor (+) tensor
return make_sum(left_, right_);
} else {
// tensor (*) tensor
return make_prod(left_, right_);
}
}
}
} // namespace
} // namespace sequant