Program Listing for File eval_expr.cpp¶
↰ Return to documentation for file (SeQuant/core/eval_expr.cpp)
#include <SeQuant/core/attr.hpp>
#include <SeQuant/core/complex.hpp>
#include <SeQuant/core/container.hpp>
#include <SeQuant/core/context.hpp>
#include <SeQuant/core/eval_expr.hpp>
#include <SeQuant/core/eval_node.hpp>
#include <SeQuant/core/expr.hpp>
#include <SeQuant/core/hash.hpp>
#include <SeQuant/core/index.hpp>
#include <SeQuant/core/parse.hpp>
#include <SeQuant/core/tensor_canonicalizer.hpp>
#include <SeQuant/core/tensor_network.hpp>
#include <SeQuant/core/utility/indices.hpp>
#include <SeQuant/core/utility/macros.hpp>
#include <SeQuant/core/wstring.hpp>
#include <SeQuant/external/bliss/graph.hh>
#include <range/v3/action.hpp>
#include <range/v3/algorithm.hpp>
#include <range/v3/functional.hpp>
#include <range/v3/iterator.hpp>
#include <range/v3/view.hpp>
#include <algorithm>
#include <cmath>
#include <ranges>
#include <string_view>
#include <type_traits>
#include <utility>
namespace sequant {
namespace {
size_t hash_terminal_tensor(Tensor const&) noexcept;
bool is_tot(Tensor const& t) noexcept {
return ranges::any_of(t.const_indices(), &Index::has_proto_indices);
}
} // namespace
namespace detail {
inline constexpr std::wstring_view label_tensor{L"I"};
inline constexpr std::wstring_view label_scalar{L"Z"};
template <typename... Args>
ExprPtr make_tensor(Args&&... arg_list) {
auto process_arg = [](auto& arg) {
using ArgType = std::remove_cvref_t<decltype(arg)>;
if constexpr (std::ranges::range<ArgType>) {
if constexpr (std::is_same_v<Index,
std::remove_cvref_t<
std::ranges::range_value_t<ArgType>>>) {
// This function is creating intermediate tensors, which don't come with
// an externally provided "correct"/canonical order of its indices.
// Hence, we are free to define our own canonical order, which we
// conveniently set to the indices being sorted in each group.
using std::ranges::begin;
using std::ranges::end;
std::sort(begin(arg), end(arg));
}
}
};
// Iterate over variadic parameter list and apply process_arg to each entry
(process_arg(arg_list), ...);
return ex<Tensor>(label_tensor, std::forward<Args>(arg_list)...);
}
template <typename... Args>
ExprPtr make_tensor_wo_symmetries(Args&&... args) {
return make_tensor(std::forward<Args>(args)..., Symmetry::Nonsymm,
BraKetSymmetry::Nonsymm, ColumnSymmetry::Nonsymm);
}
ExprPtr make_tensor(Tensor const& t, bool with_symm) {
if (with_symm) {
return make_tensor(bra(t.bra()), //
ket(t.ket()), //
aux(t.aux()), //
t.symmetry(), //
t.braket_symmetry(), //
t.column_symmetry()); //
} else {
return make_tensor_wo_symmetries(bra(t.bra()), //
ket(t.ket()), //
aux(t.aux()));
}
}
ExprPtr make_variable() { return ex<Variable>(label_scalar); }
} // namespace detail
std::string to_label_annotation(const Index& idx) {
using namespace ranges::views;
using ranges::to;
return sequant::to_string(idx.label()) +
(idx.proto_indices() | transform(&Index::label) |
transform([](auto&& str) { return sequant::to_string(str); }) |
ranges::views::join | to<std::string>);
}
std::string EvalExpr::indices_annot() const noexcept {
using ranges::views::filter;
using ranges::views::join;
using ranges::views::transform;
if (!is_tensor()) return {};
auto outer = csv_labels(canon_indices_ //
| filter(ranges::not_fn(&Index::has_proto_indices)));
auto inner = csv_labels(canon_indices_ //
| filter(&Index::has_proto_indices));
return outer + (inner.empty() ? "" : (";" + inner));
}
EvalExpr::index_vector const& EvalExpr::canon_indices() const noexcept {
return canon_indices_;
}
EvalExpr::EvalExpr(Tensor const& tnsr)
: op_type_{std::nullopt},
result_type_{ResultType::Tensor},
expr_{tnsr.clone()} {
SEQUANT_ASSERT(!tnsr.indices().empty());
if (is_tot(tnsr)) {
ExprPtrList tlist{expr_};
auto tn = TensorNetwork(tlist);
auto md =
tn.canonicalize_slots(TensorCanonicalizer::cardinal_tensor_labels());
hash_value_ = md.hash_value();
canon_phase_ = md.phase;
canon_indices_ = md.get_indices<index_vector>();
connectivity_ = std::move(md.graph);
} else {
hash_value_ = hash_terminal_tensor(tnsr);
canon_phase_ = 1;
canon_indices_ = tnsr.indices() | ranges::to<index_vector>;
}
}
EvalExpr::EvalExpr(Constant const& c)
: op_type_{std::nullopt},
result_type_{ResultType::Scalar},
expr_{c.clone()},
hash_value_{hash::value(c)} {}
EvalExpr::EvalExpr(Variable const& v)
: op_type_{std::nullopt},
result_type_{ResultType::Scalar},
expr_{v.clone()},
hash_value_{hash::value(v)} {}
EvalExpr::EvalExpr(EvalOp op, ResultType res, ExprPtr const& ex,
index_vector ixs, std::int8_t p, size_t h,
std::shared_ptr<bliss::Graph> connectivity)
: op_type_{op},
result_type_{res},
expr_{ex.clone()},
canon_indices_{std::move(ixs)},
canon_phase_{p},
hash_value_{h},
connectivity_{std::move(connectivity)} {
if (connectivity_ != nullptr) {
// Note: The non-const cmp function performs some internal cleanup that the
// comparison depends on. However, we want to be able to do const
// comparisons and hence we have to assume fully cleaned-up graphs which we
// achieve by causing a self-cleanup of the graph via the non-const cmp
// function.
connectivity_->cmp(*connectivity_);
}
// Using Tensor objects to represent scalar results is just confusing
SEQUANT_ASSERT(ex->is<Tensor>() == (res == ResultType::Tensor));
}
const std::optional<EvalOp>& EvalExpr::op_type() const noexcept {
return op_type_;
}
ResultType EvalExpr::result_type() const noexcept { return result_type_; }
size_t EvalExpr::hash_value() const noexcept { return hash_value_; }
ExprPtr EvalExpr::expr() const noexcept { return expr_; }
bool EvalExpr::tot() const noexcept {
return ranges::any_of(canon_indices(), &Index::has_proto_indices);
}
std::wstring EvalExpr::to_latex() const noexcept { return expr_->to_latex(); }
bool EvalExpr::is_tensor() const noexcept {
return expr().is<Tensor>() && result_type() == ResultType::Tensor;
}
bool EvalExpr::is_scalar() const noexcept { return !is_tensor(); }
bool EvalExpr::is_constant() const noexcept {
return expr().is<Constant>() && result_type() == ResultType::Scalar;
}
bool EvalExpr::is_variable() const noexcept {
return expr().is<Variable>() && result_type() == ResultType::Scalar;
}
bool EvalExpr::is_primary() const noexcept { return !op_type(); }
bool EvalExpr::is_sum() const noexcept { return op_type() == EvalOp::Sum; }
bool EvalExpr::is_product() const noexcept {
return op_type() == EvalOp::Product;
}
Tensor const& EvalExpr::as_tensor() const { return expr().as<Tensor>(); }
Constant const& EvalExpr::as_constant() const { return expr().as<Constant>(); }
Variable const& EvalExpr::as_variable() const { return expr().as<Variable>(); }
std::string EvalExpr::label() const noexcept {
if (is_tensor())
return to_string(as_tensor().label()) + "(" + indices_annot() + ")";
else if (is_constant()) {
return sequant::to_string(sequant::deparse(as_constant()));
} else {
SEQUANT_ASSERT(is_variable());
return to_string(as_variable().label());
}
}
std::int8_t EvalExpr::canon_phase() const noexcept { return canon_phase_; }
bool EvalExpr::has_connectivity_graph() const noexcept {
return connectivity_ != nullptr;
}
const bliss::Graph& EvalExpr::connectivity_graph() const noexcept {
SEQUANT_ASSERT(connectivity_ != nullptr);
return *connectivity_;
}
std::shared_ptr<bliss::Graph> EvalExpr::copy_connectivity_graph()
const noexcept {
return connectivity_;
}
namespace {
template <typename T>
size_t hash_indices(T const& indices) noexcept {
size_t h = 0;
for (auto const& idx : indices) {
hash::combine(h, hash::value(idx.space().type().to_int32()));
hash::combine(h, hash::value(idx.space().qns().to_int32()));
if (idx.has_proto_indices()) {
hash::combine(h, hash::value(idx.proto_indices().size()));
for (auto&& i : idx.proto_indices())
hash::combine(h, hash::value(i.label()));
}
}
return h;
}
size_t hash_terminal_tensor(Tensor const& tnsr) noexcept {
size_t h = 0;
hash::combine(h, hash::value(tnsr.label()));
hash::combine(h, hash_indices(tnsr.const_slots()));
return h;
}
} // namespace
template <typename Rng>
auto imed_hashes(Rng const& rng) {
using ranges::views::transform;
return inits(rng) | transform([](auto&& v) {
return hash::range_unordered(ranges::begin(v), ranges::end(v));
});
}
struct ExprWithHash {
ExprPtr expr;
size_t hash;
};
using EvalExprNode = FullBinaryNode<EvalExpr>;
template <typename Rng>
void collect_tensor_factors(EvalExprNode const& node, //
Rng& collect) {
static_assert(std::is_same_v<ranges::range_value_t<Rng>, ExprWithHash>);
if (auto op = node->op_type();
node->is_tensor() && (!op || *op == EvalOp::Sum))
collect.emplace_back(ExprWithHash{node->expr(), node->hash_value()});
else if (node->op_type() == EvalOp::Product && !node.leaf()) {
collect_tensor_factors(node.left(), collect);
collect_tensor_factors(node.right(), collect);
}
}
EvalExprNode binarize(Constant const& c) { return EvalExprNode{EvalExpr{c}}; }
EvalExprNode binarize(Variable const& v) { return EvalExprNode{EvalExpr{v}}; }
EvalExprNode binarize(Tensor const& t) { return EvalExprNode{EvalExpr{t}}; }
EvalExprNode binarize(Sum const& sum) {
using ranges::views::move;
using ranges::views::transform;
auto summands = sum.summands() //
| transform([](ExprPtr const& x) { return binarize(x); }) //
| ranges::to_vector;
bool const all_tensors =
ranges::all_of(summands, [](auto&& n) { return n->is_tensor(); });
[[maybe_unused]] bool const all_scalars =
ranges::all_of(summands, [](auto&& n) { return n->is_scalar(); });
SEQUANT_ASSERT(all_tensors | all_scalars);
auto hvals = summands | transform([](auto&& n) { return n->hash_value(); });
auto make_sum = [i = 0, //
hs = imed_hashes(hvals), //
all_tensors](EvalExpr const& left,
EvalExpr const&) mutable -> EvalExpr {
auto h = ranges::at(hs, ++i);
if (all_tensors) {
auto const& t = left.as_tensor();
return {EvalOp::Sum, //
ResultType::Tensor, //
detail::make_tensor_wo_symmetries(bra(t.bra()), ket(t.ket()),
aux(t.aux())), //
left.canon_indices(), //
1, //
h, //
nullptr};
} else {
return {EvalOp::Sum, //
ResultType::Scalar, //
detail::make_variable(), //
{}, //
1, //
h, //
nullptr};
}
};
return fold_left_to_node(summands | move, make_sum);
}
EvalExprNode binarize(Product const& prod) {
if (prod.factors().empty()) {
return binarize(Constant(prod.scalar()));
}
using ranges::views::move;
using ranges::views::transform;
auto factors = prod.factors() //
| transform([](ExprPtr const& x) { return binarize(x); }) //
| ranges::to_vector;
auto hvals = factors | transform([](auto&& n) { return n->hash_value(); });
auto const hs = imed_hashes(hvals) | ranges::to_vector;
auto make_prod = [i = 0, &hs](EvalExprNode const& left,
EvalExprNode const& right) mutable -> EvalExpr {
auto h = ranges::at(hs, ++i);
if (left->is_scalar() && right->is_scalar()) {
// scalar * scalar
return {EvalOp::Product,
ResultType::Scalar,
detail::make_variable(),
{},
1,
h,
nullptr};
} else if (left->is_scalar() || right->is_scalar()) {
// scalar * tensor or tensor * scalar
auto const& tl = left->is_tensor() ? left : right;
auto const& t = tl->as_tensor();
return {EvalOp::Product, //
ResultType::Tensor, //
detail::make_tensor_wo_symmetries(bra(t.bra()), ket(t.ket()),
aux(t.aux())), //
tl->canon_indices(), //
1, //
h,
nullptr};
} else {
// tensor * tensor
container::svector<ExprWithHash> subfacs;
collect_tensor_factors(left, subfacs);
collect_tensor_factors(right, subfacs);
auto ts = subfacs | transform([](auto&& t) { return t.expr; });
auto tn = TensorNetwork(ts);
auto canon =
tn.canonicalize_slots(TensorCanonicalizer::cardinal_tensor_labels());
hash::combine(h, canon.hash_value());
bool const scalar_result = canon.named_indices_canonical.empty();
if (scalar_result) {
return {EvalOp::Product, //
ResultType::Scalar, //
detail::make_variable(), //
{}, //
canon.phase, //
h,
std::move(canon.graph)};
} else {
auto idxs = get_unique_indices(Product(ts));
return {EvalOp::Product, //
ResultType::Tensor, //
detail::make_tensor_wo_symmetries(bra(idxs.bra), ket(idxs.ket),
aux(idxs.aux)),
canon.get_indices<Index::index_vector>(), //
canon.phase, //
h,
std::move(canon.graph)};
}
}
};
if (prod.scalar() == 1) {
return fold_left_to_node(factors | move, make_prod);
} else {
auto left = fold_left_to_node(factors | move, make_prod);
auto right = binarize(Constant{prod.scalar()});
auto expr = left->is_tensor() ? detail::make_tensor(left->as_tensor(),
/*with_symm = */ false)
: left->is_constant() ? (left->expr() * right->expr())
: detail::make_variable();
auto type = left->is_tensor() ? ResultType::Tensor : ResultType::Scalar;
auto h = left->hash_value();
hash::combine(h, right->hash_value());
auto result = EvalExpr{EvalOp::Product, //
type, //
expr, //
left->canon_indices(), //
1, //
h, //
nullptr};
return EvalExprNode{std::move(result), std::move(left), std::move(right)};
}
}
namespace impl {
EvalExprNode binarize(ExprPtr const& expr) {
if (expr->is<Constant>()) //
return binarize(expr->as<Constant>());
if (expr->is<Variable>()) //
return binarize(expr->as<Variable>());
if (expr->is<Tensor>()) //
return binarize(expr->as<Tensor>());
if (expr->is<Sum>()) //
return binarize(expr->as<Sum>());
if (expr->is<Product>()) //
return binarize(expr->as<Product>());
throw std::logic_error("Encountered unsupported expression in binarize.");
}
} // namespace impl
} // namespace sequant