Program Listing for File rdm.cpp

Return to documentation for file (SeQuant/domain/mbpt/rdm.cpp)

#include <SeQuant/domain/mbpt/rdm.hpp>

namespace sequant::mbpt::decompositions {

ExprPtr cumu_to_density(ExprPtr ex_) {
  assert(ex_->is<Tensor>());
  assert(ex_->as<Tensor>().rank() == 1);
  assert(ex_->as<Tensor>().label() == optype2label.at(OpType::RDMCumulant));
  auto down_0 = ex_->as<Tensor>().ket()[0];
  auto up_0 = ex_->as<Tensor>().bra()[0];

  auto density =
      ex<Tensor>(optype2label.at(OpType::RDM), bra{up_0}, ket{down_0});
  return density;
}

sequant::ExprPtr cumu2_to_density(sequant::ExprPtr ex_) {
  assert(ex_->is<Tensor>());
  assert(ex_->as<Tensor>().rank() == 2);
  assert(ex_->as<Tensor>().label() == optype2label.at(OpType::RDMCumulant));

  auto down_0 = ex_->as<Tensor>().ket()[0];
  auto up_0 = ex_->as<Tensor>().bra()[0];
  auto down_1 = ex_->as<Tensor>().ket()[1];
  auto up_1 = ex_->as<Tensor>().bra()[1];

  const auto rdm_label = optype2label.at(OpType::RDM);
  auto density2 = ex<Tensor>(rdm_label, bra{up_0, up_1}, ket{down_0, down_1});
  auto density_1 = ex<Tensor>(rdm_label, bra{up_0}, ket{down_0});
  auto density_2 = ex<Tensor>(rdm_label, bra{up_1}, ket{down_1});

  auto d1_d2 = antisymmetrize(density_1 * density_2);
  return density2 + ex<Constant>(-1) * d1_d2.result;
}

ExprPtr cumu3_to_density(ExprPtr ex_) {
  assert(ex_->is<Tensor>());
  assert(ex_->as<Tensor>().rank() == 3);
  assert(ex_->as<Tensor>().label() == optype2label.at(OpType::RDMCumulant));

  auto down_0 = ex_->as<Tensor>().ket()[0];
  auto up_0 = ex_->as<Tensor>().bra()[0];
  auto down_1 = ex_->as<Tensor>().ket()[1];
  auto up_1 = ex_->as<Tensor>().bra()[1];
  auto down_2 = ex_->as<Tensor>().ket()[2];
  auto up_2 = ex_->as<Tensor>().bra()[2];

  const auto rdm_label = optype2label.at(OpType::RDM);
  auto cumulant2 = ex<Tensor>(optype2label.at(OpType::RDMCumulant),
                              bra{up_1, up_2}, ket{down_1, down_2});
  auto density_1 = ex<Tensor>(rdm_label, bra{up_0}, ket{down_0});
  auto density_2 = ex<Tensor>(rdm_label, bra{up_1}, ket{down_1});
  auto density_3 = ex<Tensor>(rdm_label, bra{up_2}, ket{down_2});
  auto density3 =
      ex<Tensor>(rdm_label, bra{up_0, up_1, up_2}, ket{down_0, down_1, down_2});

  auto d1_d2 =
      antisymmetrize(density_1 * density_2 * density_3 + density_1 * cumulant2);
  auto temp_result = density3 * ex<Constant>(-1) * d1_d2.result;

  for (auto&& product : temp_result->as<Sum>().summands()) {
    for (auto&& factor : product->as<Product>().factors()) {
      if (factor->is<Tensor>() &&
          (factor->as<Tensor>().label() ==
           optype2label.at(OpType::RDMCumulant)) &&
          (factor->as<Tensor>().rank() == 2)) {
        factor = cumu2_to_density(factor);
      }
    }
  }
  for (auto&& product : temp_result->as<Sum>().summands()) {
    for (auto&& factor : product->as<Product>().factors()) {
      if (factor->is<Tensor>() &&
          factor->as<Tensor>().label() ==
              optype2label.at(OpType::RDMCumulant) &&
          factor->as<Tensor>().rank() == 1) {
        factor = cumu_to_density(factor);
      }
    }
  }
  return temp_result;
}

ExprPtr one_body_sub(ExprPtr ex_) {  // J. Chem. Phys. 132, 234107 (2010);
  // https://doi.org/10.1063/1.3439395 eqn 15 for
  assert(ex_->is<FNOperator>());
  assert(ex_->as<FNOperator>().rank() == 1);
  auto down_0 = ex_->as<FNOperator>().annihilators()[0].index();
  auto up_0 = ex_->as<FNOperator>().creators()[0].index();

  const auto a = ex<FNOperator>(cre({up_0}), ann({down_0}));
  const auto cumu1 =
      ex<Tensor>(optype2label.at(OpType::RDMCumulant), bra{down_0}, ket{up_0});

  auto result = a + (ex<Constant>(-1) * cumu1);
  return (result);
}

ExprPtr two_body_decomp(ExprPtr ex_,
                        bool approx) {  // J. Chem. Phys. 132, 234107 (2010);
  // https://doi.org/10.1063/1.3439395
  // eqn 16 for \tilde{a}^{pr}_{qs}
  assert(ex_->is<FNOperator>());
  assert(ex_->as<FNOperator>().rank() == 2);

  auto down_0 = ex_->as<FNOperator>().annihilators()[0].index();
  auto down_1 = ex_->as<FNOperator>().annihilators()[1].index();

  auto up_0 = ex_->as<FNOperator>().creators()[0].index();
  auto up_1 = ex_->as<FNOperator>().creators()[1].index();

  const auto cumu1 =
      ex<Tensor>(optype2label.at(OpType::RDMCumulant), bra{down_0}, ket{up_0});
  const auto cumu2 =
      ex<Tensor>(optype2label.at(OpType::RDMCumulant), bra{down_1}, ket{up_1});
  const auto a = ex<FNOperator>(cre{up_1}, ann{down_1});
  const auto a2 = ex<FNOperator>(cre{up_0, up_1}, ann{down_0, down_1});
  const auto double_cumu = ex<Tensor>(optype2label.at(OpType::RDMCumulant),
                                      bra{down_0, down_1}, ket{up_0, up_1});

  auto term1 = cumu1 * a;
  auto term2 = cumu1 * cumu2;
  auto term3 = double_cumu;

  auto sum_of_terms = antisymmetrize(term1 + term2 + term3);
  sum_of_terms.result = ex<Constant>(-1) * sum_of_terms.result;
  auto result = a2 + sum_of_terms.result;
  return (result);
}

std::pair<ExprPtr, std::pair<std::vector<Index>, std::vector<Index>>>
three_body_decomp(ExprPtr ex_, bool approx) {
  assert(ex_->is<FNOperator>());
  assert(ex_->as<FNOperator>().rank() == 3);

  auto down_0 = ex_->as<FNOperator>().annihilators()[0].index();
  auto down_1 = ex_->as<FNOperator>().annihilators()[1].index();
  auto down_2 = ex_->as<FNOperator>().annihilators()[2].index();

  std::vector<Index> initial_lower{down_0, down_1, down_2};

  auto up_0 = ex_->as<FNOperator>().creators()[0].index();
  auto up_1 = ex_->as<FNOperator>().creators()[1].index();
  auto up_2 = ex_->as<FNOperator>().creators()[2].index();

  std::vector<Index> initial_upper{up_0, up_1, up_2};

  const auto cumulant =
      ex<Tensor>(optype2label.at(OpType::RDMCumulant), bra{down_0}, ket{up_0});
  const auto a = ex<FNOperator>(cre{up_1, up_2}, ann{down_1, down_2});
  auto a_cumulant = cumulant * a;

  auto cumulant2 =
      ex<Tensor>(optype2label.at(OpType::RDMCumulant), bra{down_1}, ket{up_1});
  auto cumulant3 =
      ex<Tensor>(optype2label.at(OpType::RDMCumulant), bra{down_2}, ket{up_2});
  auto cumulant_3x = cumulant * cumulant2 * cumulant3;

  auto a1 = ex<FNOperator>(cre{up_0}, ann{down_0});
  auto a1_cumu1_cumu2 = a1 * cumulant2 * cumulant3;

  auto two_body_cumu = ex<Tensor>(optype2label.at(OpType::RDMCumulant),
                                  bra{down_1, down_2}, ket{up_1, up_2});
  auto a1_cumu2 = a1 * two_body_cumu;

  auto cumu1_cumu2 = cumulant * two_body_cumu;
  auto sum_of_terms = antisymmetrize(a_cumulant + cumulant_3x + a1_cumu1_cumu2 +
                                     a1_cumu2 + cumu1_cumu2);

  if (!approx) {
    auto cumu3 = ex<Tensor>(optype2label.at(OpType::RDMCumulant),
                            bra{down_0, down_1, down_2}, ket{up_0, up_1, up_2});

    sum_of_terms.result = cumu3 + sum_of_terms.result;
  }

  auto temp_result = sum_of_terms.result;
  simplify(temp_result);
  // std::wcout << "result before substitiutions: " <<
  // to_latex_align(temp_result) << std::endl;

  for (auto&& product :
       temp_result->as<Sum>().summands()) {  // replace all the two body terms
    // with one body terms.
    if (product->is<Product>()) {
      for (auto&& factor : product->as<Product>().factors()) {
        if (factor->is<FNOperator>() && factor->as<FNOperator>().rank() == 2) {
          factor = two_body_decomp(factor);
        }
      }
    } else {
    }
  }
  simplify(temp_result);
  for (auto&& product :
       temp_result->as<Sum>().summands()) {  // replace the one body terms with
    // the substituted expression
    if (product->is<Product>()) {
      for (auto&& factor : product->as<Product>().factors()) {
        if (factor->is<FNOperator>() && factor->as<FNOperator>().rank() == 1) {
          factor = one_body_sub(factor);
        }
      }
    }
  }
  std::pair<std::vector<Index>, std::vector<Index>> initial_pairing(
      initial_lower, initial_upper);
  std::pair<ExprPtr, std::pair<std::vector<Index>, std::vector<Index>>> result(
      temp_result, initial_pairing);
  // simplify(temp_result);
  // std::wcout << "result before substitiutions: " <<
  // to_latex_align(temp_result,20,7) << std::endl;
  return result;
}

std::pair<ExprPtr, std::pair<std::vector<Index>, std::vector<Index>>>
three_body_decomposition(ExprPtr ex_, int rank, bool fast) {
  std::pair<std::vector<Index>, std::vector<Index>> initial_pairing;
  if (rank == 3) {
    auto ex_pair = three_body_decomp(ex_);
    ex_ = ex_pair.first;
    initial_pairing = ex_pair.second;
    simplify(ex_);
    for (auto&& product : ex_->as<Sum>().summands()) {
      if (product->is<Product>()) {
        for (auto&& factor : product->as<Product>().factors()) {
          if (factor->is<Tensor>()) {
            if (factor->as<Tensor>().label() ==
                    optype2label.at(OpType::RDMCumulant) &&
                factor->as<Tensor>().rank() == 3) {
              factor = cumu3_to_density(factor);
            } else if (factor->as<Tensor>().label() ==
                           optype2label.at(OpType::RDMCumulant) &&
                       factor->as<Tensor>().rank() == 2) {
              factor = cumu2_to_density(factor);
            } else if (factor->as<Tensor>().label() ==
                           optype2label.at(OpType::RDMCumulant) &&
                       factor->as<Tensor>().rank() == 1) {
              factor = cumu_to_density(factor);
            } else {
              assert(factor->as<Tensor>().label() !=
                     optype2label.at(OpType::RDMCumulant));
            }
          }
        }
      }
    }
    simplify(ex_);

  } else if (rank == 2) {
    if (fast) {
      assert(ex_->is<FNOperator>());
      // FNOp does not store a list of indices so I have to do this
      auto down_0 = ex_->as<FNOperator>().annihilators()[0].index();
      auto down_1 = ex_->as<FNOperator>().annihilators()[1].index();
      auto down_2 = ex_->as<FNOperator>().annihilators()[2].index();

      std::vector<Index> initial_lower{down_0, down_1, down_2};

      auto up_0 = ex_->as<FNOperator>().creators()[0].index();
      auto up_1 = ex_->as<FNOperator>().creators()[1].index();
      auto up_2 = ex_->as<FNOperator>().creators()[2].index();

      std::vector<Index> initial_upper{up_0, up_1, up_2};
      initial_pairing.first = initial_lower;
      initial_pairing.second = initial_upper;
      // make tensors which can be decomposed into the constituent pieces later
      // in the procedure.
      auto DE2 = ex<Tensor>(L"DE2", bra{down_0, down_1, down_2},
                            ket{up_0, up_1, up_2});
      auto DDE = ex<Tensor>(L"DDE", bra{down_0, down_1, down_2},
                            ket{up_0, up_1, up_2});
      auto D2E = ex<Tensor>(L"D2E", bra{down_0, down_1, down_2},
                            ket{up_0, up_1, up_2});
      auto result = DE2 + D2E - ex<Constant>(2) * DDE;
      return {result, initial_pairing};
    }
    auto ex_pair = three_body_decomp(ex_, true);
    ex_ = ex_pair.first;
    initial_pairing = ex_pair.second;
    simplify(ex_);
    for (auto&& product : ex_->as<Sum>().summands()) {
      if (product->is<Product>()) {
        for (auto&& factor : product->as<Product>().factors()) {
          if (factor->is<Tensor>()) {
            if (factor->as<Tensor>().label() ==
                    optype2label.at(OpType::RDMCumulant) &&
                factor->as<Tensor>().rank() > 2) {
              factor = ex<Constant>(0);
            } else if (factor->as<Tensor>().label() ==
                           optype2label.at(OpType::RDMCumulant) &&
                       factor->as<Tensor>().rank() == 2) {
              factor = cumu2_to_density(factor);
            } else if (factor->as<Tensor>().label() ==
                       optype2label.at(OpType::RDMCumulant)) {
              factor = cumu_to_density(factor);
            } else {
              assert(factor->as<Tensor>().label() !=
                     optype2label.at(OpType::RDMCumulant));
            }
          }
        }
      }
    }
    simplify(ex_);
    // std::wcout << " cumulant replacment: " << to_latex_align(_ex,20, 7) <<
    // std::endl;
  } else if (rank == 1) {
    auto ex_pair = three_body_decomp(ex_, true);
    ex_ = ex_pair.first;
    initial_pairing = ex_pair.second;
    simplify(ex_);
    for (auto&& product : ex_->as<Sum>().summands()) {
      if (product->is<Product>()) {
        for (auto&& factor : product->as<Product>().factors()) {
          if (factor->is<Tensor>()) {
            if (factor->as<Tensor>().label() ==
                    optype2label.at(OpType::RDMCumulant) &&
                factor->as<Tensor>().rank() > 1) {
              factor = ex<Constant>(0);
            } else if (factor->as<Tensor>().label() ==
                       optype2label.at(OpType::RDMCumulant)) {
              factor = cumu_to_density(factor);
            } else {
              assert(factor->as<Tensor>().label() !=
                     optype2label.at(OpType::RDMCumulant));
            }
          }
        }
      }
    }
    simplify(ex_);
  } else {
    throw "rank not supported!";
  }
  return {ex_, initial_pairing};
}

ExprPtr three_body_substitution(ExprPtr& input, int rank, bool fast) {
  // just return back if the input is zero.
  if (input == ex<Constant>(0)) {
    return input;
  }
  if (fast) {
    assert(rank == 2);
    if (input->is<Sum>()) {
      for (auto&& product : input->as<Sum>().summands()) {
        if (product->is<Product>()) {
          for (auto&& factor : product->as<Product>().factors()) {
            if (factor->is<FNOperator>() && (factor->as<FNOperator>().rank() ==
                                             3)) {  // find the 3-body terms
              auto fac_pair = decompositions::three_body_decomposition(
                  factor, rank,
                  fast);  // decompose that term and replace the existing term.
              factor = fac_pair.first;
            }
          }
        }
      }
      simplify(input);
      return input;
    } else if (input->is<Product>()) {
      for (auto&& factor : input->as<Product>().factors()) {
        if (factor->is<FNOperator>() &&
            (factor->as<FNOperator>().rank() == 3)) {  // find the 3-body terms
          auto fac_pair = decompositions::three_body_decomposition(
              factor, rank,
              fast);  // decompose that term and replace the existing term.
          factor = fac_pair.first;
        }
      }
      simplify(input);
      return input;
    } else if (input->is<FNOperator>()) {
      auto fac_pair = decompositions::three_body_decomposition(
          input, rank,
          fast);  // decompose that term and replace the existing term.
      input = fac_pair.first;
      simplify(input);
      return input;
    }
  }
  std::pair<std::vector<Index>, std::vector<Index>> initial_pairing;
  if (input->is<Sum>()) {
    for (auto&& product : input->as<Sum>().summands()) {
      if (product->is<Product>()) {
        for (auto&& factor : product->as<Product>().factors()) {
          if (factor->is<FNOperator>() && (factor->as<FNOperator>().rank() ==
                                           3)) {  // find the 3-body terms
            auto fac_pair = decompositions::three_body_decomposition(
                factor,
                rank);  // decompose that term and replace the existing term.
            factor = fac_pair.first;
            initial_pairing = fac_pair.second;
            if (get_default_context().spbasis() == SPBasis::spinfree) {
              factor = antisymm::spin_sum(initial_pairing.second,
                                          initial_pairing.first, factor);
              non_canon_simplify(factor);
            } else {
              throw " wrong spin basis";
            }
          }
        }
      }
    }
  } else if (input->is<Product>()) {
    for (auto&& factor : input->as<Product>().factors()) {
      if (factor->is<FNOperator>() &&
          (factor->as<FNOperator>().rank() == 3)) {  // find the 3-body terms
        auto fac_pair = decompositions::three_body_decomposition(
            factor,
            rank);  // decompose that term and replace the existing term.
        factor = fac_pair.first;
        initial_pairing =
            fac_pair
                .second;  // decompose that term and replace the existing term.
        if (get_default_context().spbasis() == SPBasis::spinfree) {
          factor = antisymm::spin_sum(initial_pairing.second,
                                      initial_pairing.first, factor);
          non_canon_simplify(factor);
        }
      }
    }
  } else if (input->is<FNOperator>()) {
    auto fac_pair = decompositions::three_body_decomposition(
        input, rank);  // decompose that term and replace the existing term.
    input = fac_pair.first;
    initial_pairing = fac_pair.second;
    if (get_default_context().spbasis() == SPBasis::spinfree) {
      // std::wcout << to_latex_align(input,20) << std::endl;
      input = antisymm::spin_sum(initial_pairing.second, initial_pairing.first,
                                 input);
      non_canon_simplify(input);
    }
  } else {
    throw "cannot handle this type";
  }

  return input;
}

}  // namespace sequant::mbpt::decompositions