MPQC  2.3.1
intcca/macros.h
1 //
2 // macros.h
3 //
4 // Copyright (C) 2001 Edward Valeev
5 //
6 // Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>
7 // Maintainer: EV
8 //
9 // This file is part of the SC Toolkit.
10 //
11 // The SC Toolkit is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU Library General Public License as published by
13 // the Free Software Foundation; either version 2, or (at your option)
14 // any later version.
15 //
16 // The SC Toolkit is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU Library General Public License for more details.
20 //
21 // You should have received a copy of the GNU Library General Public License
22 // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
23 // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 //
25 // The U.S. Government is granted a limited license as per AL 91-7.
26 //
27 
28 /* True if the integral is nonzero. */
29 #define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15))
30 
31 /* Computes an index to a Cartesian function within a shell given
32  * am = total angular momentum
33  * i = the exponent of x (i is used twice in the macro--beware side effects)
34  * j = the exponent of y
35  * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0
36  * The following loop will generate indices in the proper order:
37  * cartindex = 0;
38  * for (i=am; i>=0; i--) {
39  * for (j=am-i; j>=0; j--) {
40  * do_it_with(cartindex);
41  * cartindex++;
42  * }
43  * }
44  */
45 #define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j)))
46 
47 /* This sets up the above loop over cartesian exponents as follows
48  * FOR_CART(i,j,k,am)
49  * Stuff using i,j,k.
50  * END_FOR_CART
51  */
52 #define FOR_CART(i,j,k,am) for((i)=(am);(i)>=0;(i)--) {\
53  for((j)=(am)-(i);(j)>=0;(j)--) \
54  { (k) = (am) - (i) - (j);
55 #define END_FOR_CART }}
56 
57 /* This sets up a loop over all of the generalized contractions
58  * and all of the cartesian exponents.
59  * gc is the number of the gen con
60  * index is the index within the current gen con.
61  * i,j,k are the angular momentum for x,y,z
62  * sh is the shell pointer
63  */
64 #define FOR_GCCART(gc,index,i,j,k,sh)\
65  for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
66  (index)=0;\
67  FOR_CART(i,j,k,(sh)->type[gc].am)
68 
69 #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
70  for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
71  (index)=0;\
72  FOR_CART(i,j,k,(sh)->am(gc))
73 
74 #define END_FOR_GCCART(index)\
75  (index)++;\
76  END_FOR_CART\
77  }
78 
79 #define END_FOR_GCCART_GS(index)\
80  (index)++;\
81  END_FOR_CART\
82  }
83 
84 /* These are like the above except no index is kept track of. */
85 #define FOR_GCCART2(gc,i,j,k,sh)\
86  for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
87  FOR_CART(i,j,k,(sh)->type[gc].am)
88 
89 #define END_FOR_GCCART2\
90  END_FOR_CART\
91  }
92 
93 /* These are used to loop over shells, given the centers structure
94  * and the center index, and shell index. */
95 #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
96  for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
97 #define END_FOR_SHELLS }}
98 
99 /* Computes the number of Cartesian function in a shell given
100  * am = total angular momentum
101  * formula: (am*(am+1))/2 + am+1;
102  */
103 #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
104 
105 /* Like INT_NCART, but only for nonnegative arguments. */
106 #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
107 
108 /* For a given ang. mom., am, with n cartesian functions, compute the
109  * number of cartesian functions for am+1 or am-1
110  */
111 #define INT_NCART_DEC(am,n) ((n)-(am)-1)
112 #define INT_NCART_INC(am,n) ((n)+(am)+2)
113 
114 /* Computes the number of pure angular momentum functions in a shell
115  * given am = total angular momentum
116  */
117 #define INT_NPURE(am) (2*(am)+1)
118 
119 /* Computes the number of functions in a shell given
120  * pu = pure angular momentum boolean
121  * am = total angular momentum
122  */
123 #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
124 
125 /* Given a centers pointer and a shell number, this evaluates the
126  * pointer to that shell. */
127 #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
128 
129 /* Given a centers pointer and a shell number, get the angular momentum
130  * of that shell. */
131 #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
132 
133 /* Given a centers pointer and a shell number, get pure angular momentum
134  * boolean for that shell. */
135 #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
136 
137 /* Given a centers pointer, a center number, and a shell number,
138  * get the angular momentum of that shell. */
139 #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
140 
141 /* Given a centers pointer, a center number, and a shell number,
142  * get pure angular momentum boolean for that shell. */
143 #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
144 
145 /* Given a centers pointer and a shell number, compute the number
146  * of functions in that shell. */
147 /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
148 #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
149 
150 /* These macros assist in looping over the unique integrals
151  * in a shell quartet. The exy variables are booleans giving
152  * information about the equivalence between shells x and y. The nx
153  * variables give the number of functions in each shell, x. The
154  * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
155  * The macros return the maximum index to be included in a summation
156  * over indices 1, 2, 3, and 4.
157  * These macros require canonical integrals. This requirement comes
158  * from the need that integrals of the shells (1 2|2 1) are not
159  * used. The integrals (1 2|1 2) must be used with these macros to
160  * get the right nonredundant integrals.
161  */
162 #define INT_MAX1(n1) ((n1)-1)
163 #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
164 #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
165 #define INT_MAX4(e13e24,e34,i,j,k,n4) \
166  ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
167  :((e13e24)&&((k)==(i)))?(j):(n4)-1)
168 /* A note on integral symmetries:
169  * There are 15 ways of having equivalent indices.
170  * There are 8 of these which are important for determining the
171  * nonredundant integrals (that is there are only 8 ways of counting
172  * the number of nonredundant integrals in a shell quartet)
173  * Integral type Integral Counting Type
174  * 1 (1 2|3 4) 1
175  * 2 (1 1|3 4) 2
176  * 3 (1 2|1 4) ->1
177  * 4 (1 2|3 1) ->1
178  * 5 (1 1|1 4) 3
179  * 6 (1 1|3 1) ->2
180  * 7 (1 2|1 1) ->5
181  * 8 (1 1|1 1) 4
182  * 9 (1 2|2 4) ->1
183  * 10 (1 2|3 2) ->1
184  * 11 (1 2|3 3) 5
185  * 12 (1 1|3 3) 6
186  * 13 (1 2|1 2) 7
187  * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization
188  * 15 (1 2|2 2) ->5
189  */

Generated at Sun Jan 26 2020 23:33:04 for MPQC 2.3.1 using the documentation package Doxygen 1.8.16.