MPQC  2.3.1
intv3/macros.h
1 /*
2  * macros.h
3  *
4  * Copyright (C) 1996 Limit Point Systems, Inc.
5  *
6  * Author: Curtis Janssen <cljanss@ca.sandia.gov>
7  * Maintainer: LPS
8  *
9  * This file is part of the SC Toolkit.
10  *
11  * The SC Toolkit is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU Library General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * The SC Toolkit is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU Library General Public License for more details.
20  *
21  * You should have received a copy of the GNU Library General Public License
22  * along with the SC Toolkit; see the file COPYING.LIB. If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * The U.S. Government is granted a limited license as per AL 91-7.
26  */
27 
28 /* True if the integral is nonzero. */
29 #define INT_NONZERO(x) (((x)< -1.0e-10)||((x)> 1.0e-10))
30 
31 /* Computes an index to a Cartesian function within a shell given
32  * am = total angular momentum
33  * i = the exponent of x (i is used twice in the macro--beware side effects)
34  * j = the exponent of y
35  * formula: am*(i+1) - (i*(i+1))/2 + i+1 - j - 1
36  * The following loop will generate indices in the proper order:
37  * cartindex = 0;
38  * for (i=0; i<=am; i++) {
39  * for (k=0; k<=am-i; k++) {
40  * j = am - i - k;
41  * do_it_with(cartindex); // cartindex == INT_CARTINDEX(am,i,j)
42  * cartindex++;
43  * }
44  * }
45  */
46 #define INT_CARTINDEX(am,i,j) (((((((am)+1)<<1)-(i))*((i)+1))>>1)-(j)-1)
47 
48 /* This sets up the above loop over cartesian exponents as follows
49  * FOR_CART(i,j,k,am)
50  * Stuff using i,j,k.
51  * END_FOR_CART
52  */
53 #define FOR_CART(i,j,k,am) for((i)=0;(i)<=(am);(i)++) {\
54  for((k)=0;(k)<=(am)-(i);(k)++) \
55  { (j) = (am) - (i) - (k);
56 #define END_FOR_CART }}
57 
58 /* This sets up a loop over all of the generalized contractions
59  * and all of the cartesian exponents.
60  * gc is the number of the gen con
61  * index is the index within the current gen con.
62  * i,j,k are the angular momentum for x,y,z
63  * sh is the shell pointer
64  */
65 #define FOR_GCCART(gc,index,i,j,k,sh)\
66  for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
67  (index)=0;\
68  FOR_CART(i,j,k,(sh)->type[gc].am)
69 
70 #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
71  for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
72  (index)=0;\
73  FOR_CART(i,j,k,(sh)->am(gc))
74 
75 #define END_FOR_GCCART(index)\
76  (index)++;\
77  END_FOR_CART\
78  }
79 
80 #define END_FOR_GCCART_GS(index)\
81  (index)++;\
82  END_FOR_CART\
83  }
84 
85 /* These are like the above except no index is kept track of. */
86 #define FOR_GCCART2(gc,i,j,k,sh)\
87  for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
88  FOR_CART(i,j,k,(sh)->type[gc].am)
89 
90 #define END_FOR_GCCART2\
91  END_FOR_CART\
92  }
93 
94 /* These are used to loop over shells, given the centers structure
95  * and the center index, and shell index. */
96 #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
97  for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
98 #define END_FOR_SHELLS }}
99 
100 /* Computes the number of Cartesian function in a shell given
101  * am = total angular momentum
102  * formula: (am*(am+1))/2 + am+1;
103  */
104 #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
105 
106 /* Like INT_NCART, but only for nonnegative arguments. */
107 #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
108 
109 /* For a given ang. mom., am, with n cartesian functions, compute the
110  * number of cartesian functions for am+1 or am-1
111  */
112 #define INT_NCART_DEC(am,n) ((n)-(am)-1)
113 #define INT_NCART_INC(am,n) ((n)+(am)+2)
114 
115 /* Computes the number of pure angular momentum functions in a shell
116  * given am = total angular momentum
117  */
118 #define INT_NPURE(am) (2*(am)+1)
119 
120 /* Computes the number of functions in a shell given
121  * pu = pure angular momentum boolean
122  * am = total angular momentum
123  */
124 #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
125 
126 /* Given a centers pointer and a shell number, this evaluates the
127  * pointer to that shell. */
128 #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
129 
130 /* Given a centers pointer and a shell number, get the angular momentum
131  * of that shell. */
132 #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
133 
134 /* Given a centers pointer and a shell number, get pure angular momentum
135  * boolean for that shell. */
136 #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
137 
138 /* Given a centers pointer, a center number, and a shell number,
139  * get the angular momentum of that shell. */
140 #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
141 
142 /* Given a centers pointer, a center number, and a shell number,
143  * get pure angular momentum boolean for that shell. */
144 #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
145 
146 /* Given a centers pointer and a shell number, compute the number
147  * of functions in that shell. */
148 /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
149 #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
150 
151 /* These macros assist in looping over the unique integrals
152  * in a shell quartet. The exy variables are booleans giving
153  * information about the equivalence between shells x and y. The nx
154  * variables give the number of functions in each shell, x. The
155  * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
156  * The macros return the maximum index to be included in a summation
157  * over indices 1, 2, 3, and 4.
158  * These macros require canonical integrals. This requirement comes
159  * from the need that integrals of the shells (1 2|2 1) are not
160  * used. The integrals (1 2|1 2) must be used with these macros to
161  * get the right nonredundant integrals.
162  */
163 #define INT_MAX1(n1) ((n1)-1)
164 #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
165 #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
166 #define INT_MAX4(e13e24,e34,i,j,k,n4) \
167  ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
168  :((e13e24)&&((k)==(i)))?(j):(n4)-1)
169 /* A note on integral symmetries:
170  * There are 15 ways of having equivalent indices.
171  * There are 8 of these which are important for determining the
172  * nonredundant integrals (that is there are only 8 ways of counting
173  * the number of nonredundant integrals in a shell quartet)
174  * Integral type Integral Counting Type
175  * 1 (1 2|3 4) 1
176  * 2 (1 1|3 4) 2
177  * 3 (1 2|1 4) ->1
178  * 4 (1 2|3 1) ->1
179  * 5 (1 1|1 4) 3
180  * 6 (1 1|3 1) ->2
181  * 7 (1 2|1 1) ->5
182  * 8 (1 1|1 1) 4
183  * 9 (1 2|2 4) ->1
184  * 10 (1 2|3 2) ->1
185  * 11 (1 2|3 3) 5
186  * 12 (1 1|3 3) 6
187  * 13 (1 2|1 2) 7
188  * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization
189  * 15 (1 2|2 2) ->5
190  */

Generated at Sun Jan 26 2020 23:33:04 for MPQC 2.3.1 using the documentation package Doxygen 1.8.16.