MPQC  3.0.0-alpha
macros_gamess.h
1 //
2 // macros_gamess.h
3 //
4 // Copyright (C) 2001 Edward Valeev
5 //
6 // Author: Edward Valeev <evaleev@vt.edu>
7 // Maintainer: EV
8 //
9 // This file is part of the SC Toolkit.
10 //
11 // The SC Toolkit is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU Library General Public License as published by
13 // the Free Software Foundation; either version 2, or (at your option)
14 // any later version.
15 //
16 // The SC Toolkit is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU Library General Public License for more details.
20 //
21 // You should have received a copy of the GNU Library General Public License
22 // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
23 // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 //
25 // The U.S. Government is granted a limited license as per AL 91-7.
26 //
27 
28 #ifndef _chemistry_qc_libint2_macrosgamess_h_
29 #define _chemistry_qc_libint2_macrosgamess_h_
30 
31 /* True if the integral is nonzero. */
32 #define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15))
33 
34 // for definition of the ordering see CGShellInfo
35 namespace libint2 {
36  enum CGShellOrdering {
37  CGShellOrdering_Standard = LIBINT_CGSHELL_ORDERING_STANDARD,
38  CGShellOrdering_IntV3 = LIBINT_CGSHELL_ORDERING_INTV3,
39  CGShellOrdering_GAMESS = LIBINT_CGSHELL_ORDERING_GAMESS,
40  CGShellOrdering_ORCA = LIBINT_CGSHELL_ORDERING_ORCA
41  };
42 };
43 
44 #include <cgshellinfo.h> // provided by libint2
45 
46 /* Computes an index to a Cartesian function within a shell given
47  * am = total angular momentum
48  * i = the exponent of x (i is used twice in the macro--beware side effects)
49  * j = the exponent of y
50  * for this ordering there is no formula
51  */
52 #define INT_CARTINDEX(am,i,j) libint2::CGShellInfo< libint2::CGShellOrderingData<libint2::CGShellOrdering_GAMESS,LIBINT_MAX_AM> >::cartindex(am,i,j)
53 
54 /* This sets up the above loop over cartesian exponents as follows
55  * FOR_CART(i,j,k,am)
56  * Stuff using i,j,k.
57  * END_FOR_CART
58  */
59 #define FOR_CART(i,j,k,am) for(int __xyz=0; __xyz<INT_NCART(am); ++__xyz) { \
60  libint2::CGShellInfo< libint2::CGShellOrderingData<libint2::CGShellOrdering_GAMESS,LIBINT_MAX_AM> >::cartindex_to_ijk(am,__xyz,i,j,k);
61 #define END_FOR_CART }
62 
63 
64 /* This sets up a loop over all of the generalized contractions
65  * and all of the cartesian exponents.
66  * gc is the number of the gen con
67  * index is the index within the current gen con.
68  * i,j,k are the angular momentum for x,y,z
69  * sh is the shell pointer
70  */
71 #define FOR_GCCART(gc,index,i,j,k,sh)\
72  for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
73  (index)=0;\
74  FOR_CART(i,j,k,(sh)->type[gc].am)
75 
76 #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
77  for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
78  (index)=0;\
79  FOR_CART(i,j,k,(sh)->am(gc))
80 
81 #define END_FOR_GCCART(index)\
82  (index)++;\
83  END_FOR_CART\
84  }
85 
86 #define END_FOR_GCCART_GS(index)\
87  (index)++;\
88  END_FOR_CART\
89  }
90 
91 /* These are like the above except no index is kept track of. */
92 #define FOR_GCCART2(gc,i,j,k,sh)\
93  for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
94  FOR_CART(i,j,k,(sh)->type[gc].am)
95 
96 #define END_FOR_GCCART2\
97  END_FOR_CART\
98  }
99 
100 /* These are used to loop over shells, given the centers structure
101  * and the center index, and shell index. */
102 #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
103  for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
104 #define END_FOR_SHELLS }}
105 
106 /* Computes the number of Cartesian function in a shell given
107  * am = total angular momentum
108  * formula: (am*(am+1))/2 + am+1;
109  */
110 #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
111 
112 /* Like INT_NCART, but only for nonnegative arguments. */
113 #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
114 
115 /* For a given ang. mom., am, with n cartesian functions, compute the
116  * number of cartesian functions for am+1 or am-1
117  */
118 #define INT_NCART_DEC(am,n) ((n)-(am)-1)
119 #define INT_NCART_INC(am,n) ((n)+(am)+2)
120 
121 /* Computes the number of pure angular momentum functions in a shell
122  * given am = total angular momentum
123  */
124 #define INT_NPURE(am) (2*(am)+1)
125 
126 /* Computes the number of functions in a shell given
127  * pu = pure angular momentum boolean
128  * am = total angular momentum
129  */
130 #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
131 
132 /* Given a centers pointer and a shell number, this evaluates the
133  * pointer to that shell. */
134 #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
135 
136 /* Given a centers pointer and a shell number, get the angular momentum
137  * of that shell. */
138 #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
139 
140 /* Given a centers pointer and a shell number, get pure angular momentum
141  * boolean for that shell. */
142 #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
143 
144 /* Given a centers pointer, a center number, and a shell number,
145  * get the angular momentum of that shell. */
146 #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
147 
148 /* Given a centers pointer, a center number, and a shell number,
149  * get pure angular momentum boolean for that shell. */
150 #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
151 
152 /* Given a centers pointer and a shell number, compute the number
153  * of functions in that shell. */
154 /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
155 #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
156 
157 /* These macros assist in looping over the unique integrals
158  * in a shell quartet. The exy variables are booleans giving
159  * information about the equivalence between shells x and y. The nx
160  * variables give the number of functions in each shell, x. The
161  * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
162  * The macros return the maximum index to be included in a summation
163  * over indices 1, 2, 3, and 4.
164  * These macros require canonical integrals. This requirement comes
165  * from the need that integrals of the shells (1 2|2 1) are not
166  * used. The integrals (1 2|1 2) must be used with these macros to
167  * get the right nonredundant integrals.
168  */
169 #define INT_MAX1(n1) ((n1)-1)
170 #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
171 #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
172 #define INT_MAX4(e13e24,e34,i,j,k,n4) \
173  ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
174  :((e13e24)&&((k)==(i)))?(j):(n4)-1)
175 /* A note on integral symmetries:
176  * There are 15 ways of having equivalent indices.
177  * There are 8 of these which are important for determining the
178  * nonredundant integrals (that is there are only 8 ways of counting
179  * the number of nonredundant integrals in a shell quartet)
180  * Integral type Integral Counting Type
181  * 1 (1 2|3 4) 1
182  * 2 (1 1|3 4) 2
183  * 3 (1 2|1 4) ->1
184  * 4 (1 2|3 1) ->1
185  * 5 (1 1|1 4) 3
186  * 6 (1 1|3 1) ->2
187  * 7 (1 2|1 1) ->5
188  * 8 (1 1|1 1) 4
189  * 9 (1 2|2 4) ->1
190  * 10 (1 2|3 2) ->1
191  * 11 (1 2|3 3) 5
192  * 12 (1 1|3 3) 6
193  * 13 (1 2|1 2) 7
194  * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization
195  * 15 (1 2|2 2) ->5
196  */
197 
198 #endif // header guard

Generated at Sun Jan 26 2020 23:23:58 for MPQC 3.0.0-alpha using the documentation package Doxygen 1.8.16.