mpqc::lcao::gaussian::SQVlShellData Struct Reference
Collaboration diagram for mpqc::lcao::gaussian::SQVlShellData:

Documentation

This holds shell-specific data relevant to the SVQ(l) integral estimator described in DOI 10.1063/1.4917519.

Public Member Functions

 SQVlShellData (const Shell &shell, double erfcinv_threshold=ws_to_erfcinv())
 ctor More...
 
- Public Member Functions inherited from mpqc::lcao::gaussian::FMMShellData
 FMMShellData (const Shell &shell, double erfcinv_threshold=ws_to_erfcinv())
 

Public Attributes

double Ol0_2
 
int64_t minus_am_minus_1
 -(angular momentum + 1) More...
 
- Public Attributes inherited from mpqc::lcao::gaussian::FMMShellData
Vector3d center
 charge center of mass = shell origin More...
 
double min_exp
 minimum (most-diffuse) exponent in the shell More...
 
double extent
 

Additional Inherited Members

- Static Public Member Functions inherited from mpqc::lcao::gaussian::FMMShellData
static double ws_to_erfcinv (double ws_threshold=default_ws_threshold)
 converts well-separatedness threshold More...
 
static double compute_min_exp (const Shell &sh)
 computes the minimum exponent More...
 
- Static Public Attributes inherited from mpqc::lcao::gaussian::FMMShellData
static constexpr const double default_ws_threshold = 0.1
 the default value for the well-separatedness threshold More...
 

Constructor & Destructor Documentation

◆ SQVlShellData()

mpqc::lcao::gaussian::SQVlShellData::SQVlShellData ( const Shell shell,
double  erfcinv_threshold = ws_to_erfcinv() 
)

ctor

Member Data Documentation

◆ minus_am_minus_1

int64_t mpqc::lcao::gaussian::SQVlShellData::minus_am_minus_1

-(angular momentum + 1)

◆ Ol0_2

double mpqc::lcao::gaussian::SQVlShellData::Ol0_2

squared O^l_0 multipole value, where the multipole of a contracted Gaussian is $ O^l_0 = (2 \pi)^{3/4} \sum_i c_i \beta_l(\zeta_i) $ where $ i $ indexes primitives, $ c_i $ and $ \zeta_i $ are the contraction coefficients (of unit-normalized primitives) and orbital exponents of the primitives, and $ \beta_l(\zeta) $ was defined in Eq (28), DOI 10.1063/1.4917519 $ \beta_l(\zeta) = \zeta^{-(2l+3)/4} \sqrt{(2l-1)!!} $


The documentation for this struct was generated from the following files: