MPQC  2.3.1
Public Member Functions | List of all members
sc::R12Amplitudes Class Reference

R12Amplitudes gives the amplitudes of some linear-R12-ansatz-related terms in wave function. More...

#include <r12_amps.h>

Inheritance diagram for sc::R12Amplitudes:
Inheritance graph
[legend]
Collaboration diagram for sc::R12Amplitudes:
Collaboration graph
[legend]

Public Member Functions

 R12Amplitudes (const RefSCMatrix &T2_aa, const RefSCMatrix &T2_ab, const RefSCMatrix &Rvv_aa, const RefSCMatrix &Rvv_ab, const RefSCMatrix &Roo_aa, const RefSCMatrix &Roo_ab, const RefSCMatrix &Rvo_aa, const RefSCMatrix &Rvo_ab, const RefSCMatrix &Rxo_aa, const RefSCMatrix &Rxo_ab)
 
const RefSCMatrix T2_aa () const
 
const RefSCMatrix T2_ab () const
 
const RefSCMatrix Rvv_aa () const
 
const RefSCMatrix Rvv_ab () const
 
const RefSCMatrix Roo_aa () const
 
const RefSCMatrix Roo_ab () const
 
const RefSCMatrix Rvo_aa () const
 
const RefSCMatrix Rvo_ab () const
 
const RefSCMatrix Rxo_aa () const
 
const RefSCMatrix Rxo_ab () const
 
- Public Member Functions inherited from sc::RefCount
int lock_ptr () const
 Lock this object.
 
int unlock_ptr () const
 Unlock this object.
 
void use_locks (bool inVal)
 start and stop using locks on this object
 
refcount_t nreference () const
 Return the reference count.
 
refcount_t reference ()
 Increment the reference count and return the new count.
 
refcount_t dereference ()
 Decrement the reference count and return the new count.
 
int managed () const
 
void unmanage ()
 Turn off the reference counting mechanism for this object. More...
 
int managed () const
 Return 1 if the object is managed. Otherwise return 0.
 
- Public Member Functions inherited from sc::Identity
Identifier identifier ()
 Return the Identifier for this argument. More...
 

Additional Inherited Members

- Protected Member Functions inherited from sc::RefCount
 RefCount (const RefCount &)
 
RefCountoperator= (const RefCount &)
 

Detailed Description

R12Amplitudes gives the amplitudes of some linear-R12-ansatz-related terms in wave function.

The first-order wave function terms which result from linear R12 terms are: Fij(1) = Cklij ( r12 |kl> - 0.5 rabkl |ab> - 0.5 rmnkl |mn> - ramkl |am> - ra'mkl |a'm> ) where C are optimal first-order coefficients and r are antisymmetrized integrals over r12 operator. Indices a, b are virtual MOs; m,n are occupied MOs; i, j, k, l are active occupied MOs, a' is an RI basis index.


The documentation for this class was generated from the following file:

Generated at Sun Jan 26 2020 23:33:08 for MPQC 2.3.1 using the documentation package Doxygen 1.8.16.