MPQC
3.0.0-alpha
|
Classes | |
struct | mpqc::matrix< T, Order > |
Matrix class derived from Eigen::Matrix with additional MPQC integration. More... | |
struct | mpqc::vector< T > |
Vector class derived from Eigen::Matrix with additional MPQC integration. More... | |
Typedefs | |
typedef matrix< double > | mpqc::Matrix |
Convience double matrix type. | |
typedef vector< double > | mpqc::Vector |
Convience double vector type. | |
Functions | |
template<class E > | |
double | mpqc::absmax (const E &e) |
absolute max of an Eigen type More... | |
template<class T > | |
T | mpqc::dot (const matrix< T > &a, const matrix< T > &b) |
element-wise dot product of two matrices More... | |
template<class T > | |
Eigen::SelfAdjointEigenSolver< Matrix::EigenType > | mpqc::symmetric (const matrix< T > &a) |
Computes (Eigen::SelfAdjointEigenSolver) eigensystem of a matrix. More... | |
template<class T > | |
T | mpqc::norm (const matrix< T > &a) |
Matrix norm. More... | |
template<class T > | |
void | mpqc::normalize (matrix< T > &a) |
Normalize matrix. More... | |
template<class T > | |
void | mpqc::orthonormalize (matrix< T > &d, const matrix< T > &b) |
orthormalize matrix d wrt to normalized matrix b d = normalize(d - (<d|b>*b)) More... | |
Matrix and Vector classes and function, derived from Eigen. The matrix and vector objects overide operator()
, s.t. if one of the arguments is a range, a block is returned rather than a single element. Example:
double mpqc::absmax | ( | const E & | e | ) |
absolute max of an Eigen type
element-wise dot product of two matrices
Referenced by mpqc::orthonormalize().
T mpqc::norm | ( | const matrix< T > & | a | ) |
Matrix norm.
Referenced by mpqc::ci::direct(), and mpqc::ci::norm().
void mpqc::normalize | ( | matrix< T > & | a | ) |
orthormalize matrix d wrt to normalized matrix b d = normalize(d - (<d|b>*b))
References mpqc::dot(), and mpqc::normalize().
Referenced by mpqc::ci::direct().
Eigen::SelfAdjointEigenSolver<Matrix::EigenType> mpqc::symmetric | ( | const matrix< T > & | a | ) |
Computes (Eigen::SelfAdjointEigenSolver) eigensystem of a matrix.
Matrix must be symmetric.
Referenced by mpqc::ci::direct().