MPQC  3.0.0-alpha
sc::IntegralV3 Class Reference

IntegralV3 computes integrals between Gaussian basis functions. More...

#include <chemistry/qc/intv3/intv3.h>

Inheritance diagram for sc::IntegralV3:
sc::Integral sc::SavableState sc::DescribedClass sc::RefCount

Public Member Functions

 IntegralV3 (const Ref< GaussianBasisSet > &b1=0, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 
 IntegralV3 (StateIn &)
 
 IntegralV3 (const Ref< KeyVal > &)
 
void save_data_state (StateOut &)
 Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. More...
 
Integralclone ()
 Clones the given Integral factory. The new factory may need to have set_basis and set_storage to be called on it.
 
CartesianOrdering cartesian_ordering () const
 implements Integral::cartesian_ordering()
 
CartesianIternew_cartesian_iter (int)
 Return a CartesianIter object. More...
 
RedundantCartesianIternew_redundant_cartesian_iter (int)
 Return a RedundantCartesianIter object. More...
 
RedundantCartesianSubIternew_redundant_cartesian_sub_iter (int)
 Return a RedundantCartesianSubIter object. More...
 
SphericalTransformIternew_spherical_transform_iter (int l, int inv=0, int subl=-1)
 Return a SphericalTransformIter object. More...
 
const SphericalTransformspherical_transform (int l, int inv=0, int subl=-1)
 Return a SphericalTransform object. More...
 
Ref< OneBodyIntoverlap ()
 Return a OneBodyInt that computes the overlap.
 
Ref< OneBodyIntkinetic ()
 Return a OneBodyInt that computes the kinetic energy.
 
Ref< OneBodyIntpoint_charge (const Ref< PointChargeData > &=0)
 Return a OneBodyInt that computes the integrals for interactions with point charges.
 
Ref< OneBodyOneCenterIntpoint_charge1 (const Ref< PointChargeData > &)
 Return a OneBodyInt that computes the integrals for interactions with point charges.
 
Ref< OneBodyIntnuclear ()
 Return a OneBodyInt that computes the nuclear repulsion integrals. More...
 
Ref< OneBodyIntp_dot_nuclear_p ()
 Return a OneBodyInt that computes $\bar{p}\cdot V\bar{p}$, where $V$ is the nuclear potential. More...
 
Ref< OneBodyIntp4 ()
 Return a OneBodyInt that computes $p^4 = (\bar{p} \cdot \bar{p})^2$.
 
Ref< OneBodyInthcore ()
 Return a OneBodyInt that computes the core Hamiltonian integrals. More...
 
Ref< OneBodyIntefield (const Ref< IntParamsOrigin > &)
 Return a OneBodyInt that computes the electric field integrals at specified point. More...
 
Ref< OneBodyIntefield_dot_vector (const Ref< EfieldDotVectorData > &=0)
 Return a OneBodyInt that computes the electric field integrals at a given position dotted with a given vector. More...
 
Ref< OneBodyIntdipole (const Ref< IntParamsOrigin > &=0)
 Return a OneBodyInt that computes electric dipole moment integrals, i.e. More...
 
Ref< OneBodyIntquadrupole (const Ref< IntParamsOrigin > &=0)
 Return a OneBodyInt that computes electric quadrupole moment integrals, i.e. More...
 
Ref< OneBodyDerivIntoverlap_deriv ()
 Return a OneBodyDerivInt that computes overlap derivatives.
 
Ref< OneBodyDerivIntkinetic_deriv ()
 Return a OneBodyDerivInt that computes kinetic energy derivatives.
 
Ref< OneBodyDerivIntnuclear_deriv ()
 Return a OneBodyDerivInt that computes nuclear repulsion derivatives.
 
Ref< OneBodyDerivInthcore_deriv ()
 Return a OneBodyDerivInt that computes core Hamiltonian derivatives.
 
Ref< TwoBodyIntelectron_repulsion ()
 Return a TwoBodyInt that computes electron repulsion integrals. More...
 
Ref< TwoBodyTwoCenterIntelectron_repulsion2 ()
 Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. More...
 
Ref< TwoBodyThreeCenterIntelectron_repulsion3 ()
 Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. More...
 
Ref< TwoBodyDerivIntelectron_repulsion_deriv ()
 Return a TwoBodyDerivInt that computes electron repulsion derivatives.
 
void set_basis (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Set the basis set for each center. More...
 
- Public Member Functions inherited from sc::Integral
 Integral (StateIn &)
 Restore the Integral object from the given StateIn object.
 
 Integral (const Ref< KeyVal > &)
 Construct the Integral object from the given KeyVal object.
 
virtual int equiv (const Ref< Integral > &)
 Returns nonzero if this and the given Integral object have the same integral ordering, normalization conventions, etc. More...
 
virtual void set_storage (size_t i)
 Sets the total amount of storage, in bytes, that is available.
 
size_t storage_used () const
 Returns how much storage has been used.
 
size_t storage_unused () const
 Returns how much storage was not needed.
 
virtual size_t storage_required (TwoBodyOper::type opertype, TwoBodyIntShape::value tbinttype, size_t deriv_level=0, const Ref< GaussianBasisSet > &b1=0, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Reports the approximate amount of memory required, in bytes, to create an evaluator for opertype. More...
 
virtual size_t storage_required_eri (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for electron repulsion integrals.
 
virtual size_t storage_required_grt (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for linear R12 integrals.
 
virtual size_t storage_required_g12 (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for G12 integrals.
 
virtual size_t storage_required_g12nc (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for G12NC integrals.
 
virtual size_t storage_required_g12dkh (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for G12DKH integrals.
 
virtual size_t storage_required_eri_deriv (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for derivative electron repulsion integrals.
 
void adjust_storage (ptrdiff_t s)
 The specific integral classes use this to tell Integral how much memory they are using/freeing.
 
Ref< PetiteListpetite_list ()
 Return the PetiteList object.
 
Ref< PetiteListpetite_list (const Ref< GaussianBasisSet > &)
 Return the PetiteList object for the given basis set.
 
ShellRotation shell_rotation (int am, SymmetryOperation &, int pure=0)
 Return the ShellRotation object for a shell of the given angular momentum. More...
 
const Ref< GaussianBasisSet > & basis1 () const
 retrieves basis for center 1
 
const Ref< GaussianBasisSet > & basis2 () const
 retrieves basis for center 2
 
const Ref< GaussianBasisSet > & basis3 () const
 retrieves basis for center 3
 
const Ref< GaussianBasisSet > & basis4 () const
 retrieves basis for center 4
 
Ref< MessageGrpmessagegrp ()
 Return the MessageGrp used by the integrals objects.
 
virtual Ref< OneBodyIntp_cross_nuclear_p ()
 Return a OneBodyInt that computes $\bar{p}\times V\bar{p}$, where $V$ is the nuclear potential. More...
 
virtual Ref< OneBodyIntefield_gradient (const Ref< IntParamsOrigin > &O)
 Return a OneBodyInt that computes the electric field gradient integrals at specified point. More...
 
virtual Ref< TwoBodyThreeCenterDerivIntelectron_repulsion3_deriv ()
 Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. More...
 
virtual Ref< TwoBodyTwoCenterDerivIntelectron_repulsion2_deriv ()
 Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. More...
 
virtual Ref< TwoBodyIntEvalmake_eval (TwoBodyOper::type opertype, TwoBodyIntShape::value tbinttype, size_t deriv_level=0, const Ref< GaussianBasisSet > &b1=0, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Creates an evaluator for opertype. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > coulomb ()
 Return the evaluator of two-body integrals with Coulomb kernel: $ r_{12}^{-1}, $ The evaluator will produce a set of integrals described by TwoBodyNCenterIntDescr<NumCenters,TwoBodyOperSet::ERI>. More...
 
template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType< NumCenters >::value > grt ()
 Return a 2-body evaluator that computes two-electron integrals specific to linear R12 methods. More...
 
template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType< NumCenters >::value > g12 (const Ref< IntParamsG12 > &p)
 Return a TwoBodyInt that computes two-electron integrals specific to explicitly correlated methods which use Gaussian geminals. More...
 
template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType< NumCenters >::value > g12nc (const Ref< IntParamsG12 > &p)
 Return a TwoBodyInt that computes two-electron integrals specific to explicitly correlated methods which use Gaussian geminals. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > g12dkh (const Ref< IntParamsG12 > &p)
 Return a TwoBodyInt that computes two-electron integrals specific to relativistic explicitly correlated methods which use Gaussian geminals. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > r12_k_g12 (const Ref< IntParamsG12 > &p, int k)
 Return the evaluator of two-body integrals with kernel $ r_{12}^k g_{12}, \, k=-1,0, $ where $ g_{12} $ is a geminal described by the IntParamsG12 object. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > g12t1g12 (const Ref< IntParamsG12 > &p)
 Return the evaluator of two-body integrals with kernel $ [g_{12},[\hat{T}_1,g_{12}]] $ where $ g_{12} $ is a geminal described by the IntParamsG12 object. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > delta_function ()
 Return the evaluator of two-body integrals with kernel $ \delta_3({\bf r}_1 - {\bf r}_2), $ i.e. More...
 
- Public Member Functions inherited from sc::SavableState
SavableStateoperator= (const SavableState &)
 
void save_state (StateOut &)
 Save the state of the object as specified by the StateOut object. More...
 
void save_object_state (StateOut &)
 This can be used for saving state when the exact type of the object is known for both the save and the restore. More...
 
virtual void save_vbase_state (StateOut &)
 Save the virtual bases for the object. More...
 
- Public Member Functions inherited from sc::DescribedClass
 DescribedClass (const DescribedClass &)
 
DescribedClassoperator= (const DescribedClass &)
 
ClassDescclass_desc () const MPQC__NOEXCEPT
 This returns the unique pointer to the ClassDesc corresponding to the given type_info object. More...
 
const char * class_name () const
 Return the name of the object's exact type.
 
int class_version () const
 Return the version of the class.
 
virtual void print (std::ostream &=ExEnv::out0()) const
 Print the object.
 
Ref< DescribedClassref ()
 Return this object wrapped up in a Ref smart pointer. More...
 
- Public Member Functions inherited from sc::RefCount
size_t identifier () const
 Return the unique identifier for this object that can be compared for different objects of different types. More...
 
int lock_ptr () const
 Lock this object.
 
int unlock_ptr () const
 Unlock this object.
 
void use_locks (bool inVal)
 start and stop using locks on this object
 
refcount_t nreference () const
 Return the reference count.
 
refcount_t reference ()
 Increment the reference count and return the new count.
 
refcount_t dereference ()
 Decrement the reference count and return the new count.
 
int managed () const
 
void unmanage ()
 Turn off the reference counting mechanism for this object. More...
 

Additional Inherited Members

- Public Types inherited from sc::Integral
enum  CartesianOrdering { IntV3CartesianOrdering, CCACartesianOrdering, GAMESSCartesianOrdering }
 Describes the ordering of the cartesian functions in a shell.
 
- Static Public Member Functions inherited from sc::Integral
static Integralinitial_integral (int &argc, char **argv)
 Create an integral factory. More...
 
static void set_default_integral (const Ref< Integral > &)
 Specifies a new default Integral factory.
 
static Integralget_default_integral ()
 Returns the default Integral factory.
 
- Static Public Member Functions inherited from sc::SavableState
static void save_state (SavableState *s, StateOut &)
 
static SavableStaterestore_state (StateIn &si)
 Restores objects saved with save_state. More...
 
static SavableStatekey_restore_state (StateIn &si, const char *keyword)
 Like restore_state, but keyword is used to override values while restoring.
 
static SavableStatedir_restore_state (StateIn &si, const char *objectname, const char *keyword=0)
 
- Protected Types inherited from sc::Integral
enum  SolidHarmonicsOrdering { MPQCSolidHarmonicsOrdering, CCASolidHarmonicsOrdering }
 
- Protected Member Functions inherited from sc::Integral
 Integral (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2, const Ref< GaussianBasisSet > &b3, const Ref< GaussianBasisSet > &b4)
 Initialize the Integral object given a GaussianBasisSet for each center.
 
- Protected Member Functions inherited from sc::SavableState
 SavableState (const SavableState &)
 
 SavableState (StateIn &)
 Each derived class StateIn CTOR handles the restore corresponding to calling save_object_state, save_vbase_state, and save_data_state listed above. More...
 
- Protected Member Functions inherited from sc::RefCount
 RefCount (const RefCount &)
 
RefCountoperator= (const RefCount &)
 
- Protected Attributes inherited from sc::Integral
Ref< GaussianBasisSetbs1_
 
Ref< GaussianBasisSetbs2_
 
Ref< GaussianBasisSetbs3_
 
Ref< GaussianBasisSetbs4_
 
SolidHarmonicsOrdering sharmorder_
 
size_t storage_
 
size_t storage_used_
 
Ref< ThreadLocktlock_
 
Ref< MessageGrpgrp_
 

Detailed Description

IntegralV3 computes integrals between Gaussian basis functions.

Member Function Documentation

◆ dipole()

Ref<OneBodyInt> sc::IntegralV3::dipole ( const Ref< IntParamsOrigin > &  O = 0)
virtual

Return a OneBodyInt that computes electric dipole moment integrals, i.e.

integrals of the $e (\mathbf{r}-\mathbf{O})$ operator. The canonical order of integrals in a set is x, y, z.

Parameters
OIntParamsOrigin object that specifies the origin of the multipole expansion; the default is to use the origin of the coordinate system.
Note
Multiply by -1 to obtain electronic electric quadrupole integrals.

Implements sc::Integral.

◆ efield()

Ref<OneBodyInt> sc::IntegralV3::efield ( const Ref< IntParamsOrigin > &  O)
virtual

Return a OneBodyInt that computes the electric field integrals at specified point.

The canonical order of integrals in a set is x, y, z (i.e. Ex, Ey, Ey).

Parameters
OIntParamsOrigin object that specifies the point where the electric field is computed; there is no default.
See also
efield_dot_vector()

Implements sc::Integral.

◆ efield_dot_vector()

Ref<OneBodyInt> sc::IntegralV3::efield_dot_vector ( const Ref< EfieldDotVectorData > &  = 0)
virtual

Return a OneBodyInt that computes the electric field integrals at a given position dotted with a given vector.

See also
efield()

Implements sc::Integral.

◆ electron_repulsion()

Ref<TwoBodyInt> sc::IntegralV3::electron_repulsion ( )
virtual

Return a TwoBodyInt that computes electron repulsion integrals.

This TwoBodyInt will produce a set of integrals described by TwoBodyIntDescrERI.

Deprecated:
Use sc::Integral::coulomb<4>() instead.

Reimplemented from sc::Integral.

◆ electron_repulsion2()

Ref<TwoBodyTwoCenterInt> sc::IntegralV3::electron_repulsion2 ( )
virtual

Return a TwoBodyTwoCenterInt that computes electron repulsion integrals.

If this is not re-implemented it will throw.

Deprecated:
Use sc::Integral::coulomb<2>() instead.

Reimplemented from sc::Integral.

◆ electron_repulsion3()

Ref<TwoBodyThreeCenterInt> sc::IntegralV3::electron_repulsion3 ( )
virtual

Return a TwoBodyThreeCenterInt that computes electron repulsion integrals.

Electron 1 corresponds to centers 1 and 2, electron 2 corresponds to center 3. If this is not re-implemented it will throw.

Deprecated:
Use sc::Integral::coulomb<3>() instead.

Reimplemented from sc::Integral.

◆ hcore()

Ref<OneBodyInt> sc::IntegralV3::hcore ( )
virtual

Return a OneBodyInt that computes the core Hamiltonian integrals.

See also
nuclear()

Implements sc::Integral.

◆ new_cartesian_iter()

CartesianIter* sc::IntegralV3::new_cartesian_iter ( int  )
virtual

Return a CartesianIter object.

The caller is responsible for freeing the object.

Implements sc::Integral.

◆ new_redundant_cartesian_iter()

RedundantCartesianIter* sc::IntegralV3::new_redundant_cartesian_iter ( int  )
virtual

Return a RedundantCartesianIter object.

The caller is responsible for freeing the object.

Implements sc::Integral.

◆ new_redundant_cartesian_sub_iter()

RedundantCartesianSubIter* sc::IntegralV3::new_redundant_cartesian_sub_iter ( int  )
virtual

Return a RedundantCartesianSubIter object.

The caller is responsible for freeing the object.

Implements sc::Integral.

◆ new_spherical_transform_iter()

SphericalTransformIter* sc::IntegralV3::new_spherical_transform_iter ( int  l,
int  inv = 0,
int  subl = -1 
)
virtual

Return a SphericalTransformIter object.

This factory must have been initialized with a basis set whose maximum angular momentum is greater than or equal to l. The caller is responsible for freeing the object.

Implements sc::Integral.

◆ nuclear()

Ref<OneBodyInt> sc::IntegralV3::nuclear ( )
virtual

Return a OneBodyInt that computes the nuclear repulsion integrals.

Note
Charges from the Molecule of basis1 are used. If basis2->molecule() is not not identical to basis1->molecule() (even if not same object), then the charges of both molecules are used.

Implements sc::Integral.

◆ p_dot_nuclear_p()

Ref<OneBodyInt> sc::IntegralV3::p_dot_nuclear_p ( )
virtual

Return a OneBodyInt that computes $\bar{p}\cdot V\bar{p}$, where $V$ is the nuclear potential.

See also
nuclear()

Reimplemented from sc::Integral.

◆ quadrupole()

Ref<OneBodyInt> sc::IntegralV3::quadrupole ( const Ref< IntParamsOrigin > &  O = 0)
virtual

Return a OneBodyInt that computes electric quadrupole moment integrals, i.e.

integrals of the $e (\mathbf{r}-\mathbf{O}) \otimes (\mathbf{r}-\mathbf{O})$ operator. The canonical order of integrals in a set is x^2, xy, xz, y^2, yz, z^2.

Parameters
OIntParamsOrigin object that specifies the origin of the multipole expansion; the default is to use the origin of the coordinate system
Note
These are not traceless quadrupole integrals!!
Multiply by -1 to obtain electronic electric quadrupole integrals.

Implements sc::Integral.

◆ save_data_state()

void sc::IntegralV3::save_data_state ( StateOut )
virtual

Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them.

This must be implemented by the derived class if the class has data.

Reimplemented from sc::Integral.

◆ set_basis()

void sc::IntegralV3::set_basis ( const Ref< GaussianBasisSet > &  b1,
const Ref< GaussianBasisSet > &  b2 = 0,
const Ref< GaussianBasisSet > &  b3 = 0,
const Ref< GaussianBasisSet > &  b4 = 0 
)
virtual

Set the basis set for each center.

Parameters
[in]b1basis set on center 1; there is no default
[in]b2basis set on center 2; if null, will use b1
[in]b3basis set on center 3; if null, will use b2
[in]b4basis set on center 4; if null, will use b3

Reimplemented from sc::Integral.

◆ spherical_transform()

const SphericalTransform* sc::IntegralV3::spherical_transform ( int  l,
int  inv = 0,
int  subl = -1 
)
virtual

Return a SphericalTransform object.

This factory must have been initialized with a basis set whose maximum angular momentum is greater than or equal to l. The pointer is only valid while this Integral object is valid.

Implements sc::Integral.


The documentation for this class was generated from the following file:

Generated at Sun Jan 26 2020 23:24:06 for MPQC 3.0.0-alpha using the documentation package Doxygen 1.8.16.