MPQC  3.0.0-alpha
sc::Integral Class Referenceabstract

The Integral abstract class acts as a factory to provide objects that compute one and two electron integrals. More...

#include <chemistry/qc/basis/integral.h>

Inheritance diagram for sc::Integral:
sc::SavableState sc::DescribedClass sc::RefCount sc::IntegralLibint2 sc::IntegralV3

Public Types

enum  CartesianOrdering { IntV3CartesianOrdering, CCACartesianOrdering, GAMESSCartesianOrdering }
 Describes the ordering of the cartesian functions in a shell.
 

Public Member Functions

 Integral (StateIn &)
 Restore the Integral object from the given StateIn object.
 
 Integral (const Ref< KeyVal > &)
 Construct the Integral object from the given KeyVal object.
 
void save_data_state (StateOut &)
 Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. More...
 
virtual Integralclone ()=0
 Clones the given Integral factory. The new factory may need to have set_basis and set_storage to be called on it.
 
virtual int equiv (const Ref< Integral > &)
 Returns nonzero if this and the given Integral object have the same integral ordering, normalization conventions, etc. More...
 
virtual CartesianOrdering cartesian_ordering () const =0
 returns the ordering used by this factory
 
virtual void set_storage (size_t i)
 Sets the total amount of storage, in bytes, that is available.
 
size_t storage_used () const
 Returns how much storage has been used.
 
size_t storage_unused () const
 Returns how much storage was not needed.
 
virtual size_t storage_required (TwoBodyOper::type opertype, TwoBodyIntShape::value tbinttype, size_t deriv_level=0, const Ref< GaussianBasisSet > &b1=0, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Reports the approximate amount of memory required, in bytes, to create an evaluator for opertype. More...
 
virtual size_t storage_required_eri (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for electron repulsion integrals.
 
virtual size_t storage_required_grt (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for linear R12 integrals.
 
virtual size_t storage_required_g12 (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for G12 integrals.
 
virtual size_t storage_required_g12nc (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for G12NC integrals.
 
virtual size_t storage_required_g12dkh (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for G12DKH integrals.
 
virtual size_t storage_required_eri_deriv (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Returns how much storage will be needed to initialize a two-body integrals evaluator for derivative electron repulsion integrals.
 
void adjust_storage (ptrdiff_t s)
 The specific integral classes use this to tell Integral how much memory they are using/freeing.
 
Ref< PetiteListpetite_list ()
 Return the PetiteList object.
 
Ref< PetiteListpetite_list (const Ref< GaussianBasisSet > &)
 Return the PetiteList object for the given basis set.
 
ShellRotation shell_rotation (int am, SymmetryOperation &, int pure=0)
 Return the ShellRotation object for a shell of the given angular momentum. More...
 
const Ref< GaussianBasisSet > & basis1 () const
 retrieves basis for center 1
 
const Ref< GaussianBasisSet > & basis2 () const
 retrieves basis for center 2
 
const Ref< GaussianBasisSet > & basis3 () const
 retrieves basis for center 3
 
const Ref< GaussianBasisSet > & basis4 () const
 retrieves basis for center 4
 
virtual void set_basis (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Set the basis set for each center. More...
 
Ref< MessageGrpmessagegrp ()
 Return the MessageGrp used by the integrals objects.
 
virtual CartesianIternew_cartesian_iter (int)=0
 Return a CartesianIter object. More...
 
virtual RedundantCartesianIternew_redundant_cartesian_iter (int)=0
 Return a RedundantCartesianIter object. More...
 
virtual RedundantCartesianSubIternew_redundant_cartesian_sub_iter (int)=0
 Return a RedundantCartesianSubIter object. More...
 
virtual SphericalTransformIternew_spherical_transform_iter (int l, int inv=0, int subl=-1)=0
 Return a SphericalTransformIter object. More...
 
virtual const SphericalTransformspherical_transform (int l, int inv=0, int subl=-1)=0
 Return a SphericalTransform object. More...
 
virtual Ref< OneBodyIntoverlap ()=0
 Return a OneBodyInt that computes the overlap.
 
virtual Ref< OneBodyIntkinetic ()=0
 Return a OneBodyInt that computes the kinetic energy.
 
virtual Ref< OneBodyIntpoint_charge (const Ref< PointChargeData > &)=0
 Return a OneBodyInt that computes the integrals for interactions with point charges.
 
virtual Ref< OneBodyOneCenterIntpoint_charge1 (const Ref< PointChargeData > &)
 Return a OneBodyInt that computes the integrals for interactions with point charges.
 
virtual Ref< OneBodyIntnuclear ()=0
 Return a OneBodyInt that computes the nuclear repulsion integrals. More...
 
virtual Ref< OneBodyIntp_dot_nuclear_p ()
 Return a OneBodyInt that computes $\bar{p}\cdot V\bar{p}$, where $V$ is the nuclear potential. More...
 
virtual Ref< OneBodyIntp_cross_nuclear_p ()
 Return a OneBodyInt that computes $\bar{p}\times V\bar{p}$, where $V$ is the nuclear potential. More...
 
virtual Ref< OneBodyIntp4 ()=0
 Return a OneBodyInt that computes $p^4 = (\bar{p} \cdot \bar{p})^2$.
 
virtual Ref< OneBodyInthcore ()=0
 Return a OneBodyInt that computes the core Hamiltonian integrals. More...
 
virtual Ref< OneBodyIntefield (const Ref< IntParamsOrigin > &O)=0
 Return a OneBodyInt that computes the electric field integrals at specified point. More...
 
virtual Ref< OneBodyIntefield_dot_vector (const Ref< EfieldDotVectorData > &)=0
 Return a OneBodyInt that computes the electric field integrals at a given position dotted with a given vector. More...
 
virtual Ref< OneBodyIntefield_gradient (const Ref< IntParamsOrigin > &O)
 Return a OneBodyInt that computes the electric field gradient integrals at specified point. More...
 
virtual Ref< OneBodyIntdipole (const Ref< IntParamsOrigin > &O=0)=0
 Return a OneBodyInt that computes electric dipole moment integrals, i.e. More...
 
virtual Ref< OneBodyIntquadrupole (const Ref< IntParamsOrigin > &O=0)=0
 Return a OneBodyInt that computes electric quadrupole moment integrals, i.e. More...
 
virtual Ref< OneBodyDerivIntoverlap_deriv ()=0
 Return a OneBodyDerivInt that computes overlap derivatives.
 
virtual Ref< OneBodyDerivIntkinetic_deriv ()=0
 Return a OneBodyDerivInt that computes kinetic energy derivatives.
 
virtual Ref< OneBodyDerivIntnuclear_deriv ()=0
 Return a OneBodyDerivInt that computes nuclear repulsion derivatives.
 
virtual Ref< OneBodyDerivInthcore_deriv ()=0
 Return a OneBodyDerivInt that computes core Hamiltonian derivatives.
 
virtual DEPRECATED Ref< TwoBodyThreeCenterIntelectron_repulsion3 ()
 Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. More...
 
virtual Ref< TwoBodyThreeCenterDerivIntelectron_repulsion3_deriv ()
 Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. More...
 
virtual DEPRECATED Ref< TwoBodyTwoCenterIntelectron_repulsion2 ()
 Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. More...
 
virtual Ref< TwoBodyTwoCenterDerivIntelectron_repulsion2_deriv ()
 Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. More...
 
virtual DEPRECATED Ref< TwoBodyIntelectron_repulsion ()
 Return a TwoBodyInt that computes electron repulsion integrals. More...
 
virtual Ref< TwoBodyDerivIntelectron_repulsion_deriv ()
 Return a TwoBodyDerivInt that computes electron repulsion derivatives.
 
virtual Ref< TwoBodyIntEvalmake_eval (TwoBodyOper::type opertype, TwoBodyIntShape::value tbinttype, size_t deriv_level=0, const Ref< GaussianBasisSet > &b1=0, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
 Creates an evaluator for opertype. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > coulomb ()
 Return the evaluator of two-body integrals with Coulomb kernel: $ r_{12}^{-1}, $ The evaluator will produce a set of integrals described by TwoBodyNCenterIntDescr<NumCenters,TwoBodyOperSet::ERI>. More...
 
template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType< NumCenters >::value > grt ()
 Return a 2-body evaluator that computes two-electron integrals specific to linear R12 methods. More...
 
template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType< NumCenters >::value > g12 (const Ref< IntParamsG12 > &p)
 Return a TwoBodyInt that computes two-electron integrals specific to explicitly correlated methods which use Gaussian geminals. More...
 
template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType< NumCenters >::value > g12nc (const Ref< IntParamsG12 > &p)
 Return a TwoBodyInt that computes two-electron integrals specific to explicitly correlated methods which use Gaussian geminals. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > g12dkh (const Ref< IntParamsG12 > &p)
 Return a TwoBodyInt that computes two-electron integrals specific to relativistic explicitly correlated methods which use Gaussian geminals. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > r12_k_g12 (const Ref< IntParamsG12 > &p, int k)
 Return the evaluator of two-body integrals with kernel $ r_{12}^k g_{12}, \, k=-1,0, $ where $ g_{12} $ is a geminal described by the IntParamsG12 object. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > g12t1g12 (const Ref< IntParamsG12 > &p)
 Return the evaluator of two-body integrals with kernel $ [g_{12},[\hat{T}_1,g_{12}]] $ where $ g_{12} $ is a geminal described by the IntParamsG12 object. More...
 
template<int NumCenters>
Ref< typename TwoBodyIntEvalType< NumCenters >::value > delta_function ()
 Return the evaluator of two-body integrals with kernel $ \delta_3({\bf r}_1 - {\bf r}_2), $ i.e. More...
 
- Public Member Functions inherited from sc::SavableState
SavableStateoperator= (const SavableState &)
 
void save_state (StateOut &)
 Save the state of the object as specified by the StateOut object. More...
 
void save_object_state (StateOut &)
 This can be used for saving state when the exact type of the object is known for both the save and the restore. More...
 
virtual void save_vbase_state (StateOut &)
 Save the virtual bases for the object. More...
 
- Public Member Functions inherited from sc::DescribedClass
 DescribedClass (const DescribedClass &)
 
DescribedClassoperator= (const DescribedClass &)
 
ClassDescclass_desc () const MPQC__NOEXCEPT
 This returns the unique pointer to the ClassDesc corresponding to the given type_info object. More...
 
const char * class_name () const
 Return the name of the object's exact type.
 
int class_version () const
 Return the version of the class.
 
virtual void print (std::ostream &=ExEnv::out0()) const
 Print the object.
 
Ref< DescribedClassref ()
 Return this object wrapped up in a Ref smart pointer. More...
 
- Public Member Functions inherited from sc::RefCount
size_t identifier () const
 Return the unique identifier for this object that can be compared for different objects of different types. More...
 
int lock_ptr () const
 Lock this object.
 
int unlock_ptr () const
 Unlock this object.
 
void use_locks (bool inVal)
 start and stop using locks on this object
 
refcount_t nreference () const
 Return the reference count.
 
refcount_t reference ()
 Increment the reference count and return the new count.
 
refcount_t dereference ()
 Decrement the reference count and return the new count.
 
int managed () const
 
void unmanage ()
 Turn off the reference counting mechanism for this object. More...
 

Static Public Member Functions

static Integralinitial_integral (int &argc, char **argv)
 Create an integral factory. More...
 
static void set_default_integral (const Ref< Integral > &)
 Specifies a new default Integral factory.
 
static Integralget_default_integral ()
 Returns the default Integral factory.
 
- Static Public Member Functions inherited from sc::SavableState
static void save_state (SavableState *s, StateOut &)
 
static SavableStaterestore_state (StateIn &si)
 Restores objects saved with save_state. More...
 
static SavableStatekey_restore_state (StateIn &si, const char *keyword)
 Like restore_state, but keyword is used to override values while restoring.
 
static SavableStatedir_restore_state (StateIn &si, const char *objectname, const char *keyword=0)
 

Protected Types

enum  SolidHarmonicsOrdering { MPQCSolidHarmonicsOrdering, CCASolidHarmonicsOrdering }
 

Protected Member Functions

 Integral (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2, const Ref< GaussianBasisSet > &b3, const Ref< GaussianBasisSet > &b4)
 Initialize the Integral object given a GaussianBasisSet for each center.
 
- Protected Member Functions inherited from sc::SavableState
 SavableState (const SavableState &)
 
 SavableState (StateIn &)
 Each derived class StateIn CTOR handles the restore corresponding to calling save_object_state, save_vbase_state, and save_data_state listed above. More...
 
- Protected Member Functions inherited from sc::RefCount
 RefCount (const RefCount &)
 
RefCountoperator= (const RefCount &)
 

Protected Attributes

Ref< GaussianBasisSetbs1_
 
Ref< GaussianBasisSetbs2_
 
Ref< GaussianBasisSetbs3_
 
Ref< GaussianBasisSetbs4_
 
SolidHarmonicsOrdering sharmorder_
 
size_t storage_
 
size_t storage_used_
 
Ref< ThreadLocktlock_
 
Ref< MessageGrpgrp_
 

Friends

template<int NumCenters>
struct sc::detail::ERIEvalCreator
 
template<int NumCenters>
struct sc::detail::R12EvalCreator
 
template<int NumCenters>
struct sc::detail::G12EvalCreator
 
template<int NumCenters>
struct sc::detail::G12NCEvalCreator
 
template<int NumCenters>
struct sc::detail::G12DKHEvalCreator
 
template<int NumCenters>
struct sc::detail::R120G12EvalCreator
 
template<int NumCenters>
struct sc::detail::R12m1G12EvalCreator
 
template<int NumCenters>
struct sc::detail::G12T1G12EvalCreator
 
template<int NumCenters>
struct sc::detail::DeltaFunctionEvalCreator
 

Detailed Description

The Integral abstract class acts as a factory to provide objects that compute one and two electron integrals.

Member Function Documentation

◆ coulomb()

template<int NumCenters>
Ref< typename TwoBodyIntEvalType<NumCenters>::value > sc::Integral::coulomb ( )
inline

Return the evaluator of two-body integrals with Coulomb kernel: $ r_{12}^{-1}, $ The evaluator will produce a set of integrals described by TwoBodyNCenterIntDescr<NumCenters,TwoBodyOperSet::ERI>.

Template Parameters
NumCentersspecifies the number of centers that carry basis functions. Valid values are 4, 3, and 2.
Note
Implementation of this function is optional. The default implementation will throw FeatureNotImplemented . It is implemented in sc::IntegralV3 and sc::IntegralLibint2 .

◆ delta_function()

template<int NumCenters>
Ref< typename TwoBodyIntEvalType<NumCenters>::value > sc::Integral::delta_function ( )
inline

Return the evaluator of two-body integrals with kernel $ \delta_3({\bf r}_1 - {\bf r}_2), $ i.e.

a one-electron overlap.

The evaluator will produce a set of integrals described by TwoBodyIntDescrDelta.

Template Parameters
NumCentersspecifies the number of centers that carry basis functions. Valid values are 4, 3, and 2.
Note
Implementation of this function is optional. The default implementation will throw sc::FeatureNotImplemented. Implemented in sc::IntegralLibint2

◆ dipole()

virtual Ref<OneBodyInt> sc::Integral::dipole ( const Ref< IntParamsOrigin > &  O = 0)
pure virtual

Return a OneBodyInt that computes electric dipole moment integrals, i.e.

integrals of the $e (\mathbf{r}-\mathbf{O})$ operator. The canonical order of integrals in a set is x, y, z.

Parameters
OIntParamsOrigin object that specifies the origin of the multipole expansion; the default is to use the origin of the coordinate system.
Note
Multiply by -1 to obtain electronic electric quadrupole integrals.

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ efield()

virtual Ref<OneBodyInt> sc::Integral::efield ( const Ref< IntParamsOrigin > &  O)
pure virtual

Return a OneBodyInt that computes the electric field integrals at specified point.

The canonical order of integrals in a set is x, y, z (i.e. Ex, Ey, Ey).

Parameters
OIntParamsOrigin object that specifies the point where the electric field is computed; there is no default.
See also
efield_dot_vector()

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ efield_dot_vector()

virtual Ref<OneBodyInt> sc::Integral::efield_dot_vector ( const Ref< EfieldDotVectorData > &  )
pure virtual

Return a OneBodyInt that computes the electric field integrals at a given position dotted with a given vector.

See also
efield()

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ efield_gradient()

virtual Ref<OneBodyInt> sc::Integral::efield_gradient ( const Ref< IntParamsOrigin > &  O)
virtual

Return a OneBodyInt that computes the electric field gradient integrals at specified point.

The canonical order of integrals in the 6-element sequence is d Ex / dx, d Ex / dy, d Ex / dz, d Ey / dy, d Ey / dz, d Ez / dz,

Parameters
OIntParamsOrigin object that specifies the point where the electric field gradient is computed; there is no default.
Note
only 6 elements are unique since d Ei / d j = d Ej / d i

Reimplemented in sc::IntegralLibint2.

◆ electron_repulsion()

virtual DEPRECATED Ref<TwoBodyInt> sc::Integral::electron_repulsion ( )
virtual

Return a TwoBodyInt that computes electron repulsion integrals.

This TwoBodyInt will produce a set of integrals described by TwoBodyIntDescrERI.

Deprecated:
Use sc::Integral::coulomb<4>() instead.

Reimplemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ electron_repulsion2()

virtual DEPRECATED Ref<TwoBodyTwoCenterInt> sc::Integral::electron_repulsion2 ( )
virtual

Return a TwoBodyTwoCenterInt that computes electron repulsion integrals.

If this is not re-implemented it will throw.

Deprecated:
Use sc::Integral::coulomb<2>() instead.

Reimplemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ electron_repulsion2_deriv()

virtual Ref<TwoBodyTwoCenterDerivInt> sc::Integral::electron_repulsion2_deriv ( )
virtual

Return a TwoBodyTwoCenterInt that computes electron repulsion integrals.

If this is not re-implemented it will throw.

◆ electron_repulsion3()

virtual DEPRECATED Ref<TwoBodyThreeCenterInt> sc::Integral::electron_repulsion3 ( )
virtual

Return a TwoBodyThreeCenterInt that computes electron repulsion integrals.

Electron 1 corresponds to centers 1 and 2, electron 2 corresponds to center 3. If this is not re-implemented it will throw.

Deprecated:
Use sc::Integral::coulomb<3>() instead.

Reimplemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ electron_repulsion3_deriv()

virtual Ref<TwoBodyThreeCenterDerivInt> sc::Integral::electron_repulsion3_deriv ( )
virtual

Return a TwoBodyThreeCenterInt that computes electron repulsion integrals.

If this is not re-implemented it will throw.

See also
electron_repulsion3()

◆ equiv()

virtual int sc::Integral::equiv ( const Ref< Integral > &  )
virtual

Returns nonzero if this and the given Integral object have the same integral ordering, normalization conventions, etc.


◆ g12()

template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType<NumCenters>::value > sc::Integral::g12 ( const Ref< IntParamsG12 > &  p)
inline

Return a TwoBodyInt that computes two-electron integrals specific to explicitly correlated methods which use Gaussian geminals.

This TwoBodyInt will produce a set of integrals described by TwoBodyIntDescrG12. Implementation for this kind of TwoBodyInt is optional.

◆ g12dkh()

template<int NumCenters>
Ref< typename TwoBodyIntEvalType<NumCenters>::value > sc::Integral::g12dkh ( const Ref< IntParamsG12 > &  p)
inline

Return a TwoBodyInt that computes two-electron integrals specific to relativistic explicitly correlated methods which use Gaussian geminals.

This TwoBodyInt will produce a set of integrals described by TwoBodyIntDescrG12DKH. Implementation for this kind of TwoBodyInt is optional.

◆ g12nc()

template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType<NumCenters>::value > sc::Integral::g12nc ( const Ref< IntParamsG12 > &  p)
inline

Return a TwoBodyInt that computes two-electron integrals specific to explicitly correlated methods which use Gaussian geminals.

This particular implementation does not produce commutator integrals. This TwoBodyInt will produce a set of integrals described by TwoBodyIntDescrG12NC. Implementation for this kind of TwoBodyInt is optional.

◆ g12t1g12()

template<int NumCenters>
Ref< typename TwoBodyIntEvalType<NumCenters>::value > sc::Integral::g12t1g12 ( const Ref< IntParamsG12 > &  p)
inline

Return the evaluator of two-body integrals with kernel $ [g_{12},[\hat{T}_1,g_{12}]] $ where $ g_{12} $ is a geminal described by the IntParamsG12 object.

These integrals are, for example, necessary in explicitly correlated methods which use Gaussian geminals.

The evaluator will produce a set of integrals described by TwoBodyNCenterIntDescr<NumCenters,TwoBodyOperSet::G12_T1_G12>.

Template Parameters
NumCentersspecifies the number of centers that carry basis functions. Valid values are 4, 3, and 2.
Note
Implementation of this function is optional. The default implementation will throw FeatureNotImplemented .

◆ grt()

template<int NumCenters>
DEPRECATED Ref< typename TwoBodyIntEvalType<NumCenters>::value > sc::Integral::grt ( )
inline

Return a 2-body evaluator that computes two-electron integrals specific to linear R12 methods.

According to the convention in the literature, "g" stands for electron repulsion integral, "r" for the integral of r12 operator, and "t" for the commutator integrals. This TwoBodyInt will produce a set of integrals described by TwoBodyIntDescrR12. Implementation for this kind of TwoBodyInt is optional.

Template Parameters
NumCentersspecifies the number of centers that carry basis functions. Valid values are 4, 3, and 2.

◆ hcore()

virtual Ref<OneBodyInt> sc::Integral::hcore ( )
pure virtual

Return a OneBodyInt that computes the core Hamiltonian integrals.

See also
nuclear()

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ initial_integral()

static Integral* sc::Integral::initial_integral ( int &  argc,
char **  argv 
)
static

Create an integral factory.

This routine looks for a -integral argument, then the environmental variable INTEGRAL. The argument to -integral should be either string for a ParsedKeyVal constructor or a classname. This factory is not guaranteed to have its storage and basis sets set up properly, hence set_basis and set_storage need to be called on it.

◆ make_eval()

virtual Ref<TwoBodyIntEval> sc::Integral::make_eval ( TwoBodyOper::type  opertype,
TwoBodyIntShape::value  tbinttype,
size_t  deriv_level = 0,
const Ref< GaussianBasisSet > &  b1 = 0,
const Ref< GaussianBasisSet > &  b2 = 0,
const Ref< GaussianBasisSet > &  b3 = 0,
const Ref< GaussianBasisSet > &  b4 = 0 
)
virtual

Creates an evaluator for opertype.

Parameters
opertypethe operator type, TwoBodyOper::type
tbinttypethe integral type, TwoBodyIntShape::value
deriv_levelderivative level
b1basis set on center 1
b2basis set on center 2
b3basis set on center 3
b4basis set on center 4
Returns
number of bytes needed to create an evaluator of the specified type

◆ new_cartesian_iter()

virtual CartesianIter* sc::Integral::new_cartesian_iter ( int  )
pure virtual

Return a CartesianIter object.

The caller is responsible for freeing the object.

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ new_redundant_cartesian_iter()

virtual RedundantCartesianIter* sc::Integral::new_redundant_cartesian_iter ( int  )
pure virtual

Return a RedundantCartesianIter object.

The caller is responsible for freeing the object.

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ new_redundant_cartesian_sub_iter()

virtual RedundantCartesianSubIter* sc::Integral::new_redundant_cartesian_sub_iter ( int  )
pure virtual

Return a RedundantCartesianSubIter object.

The caller is responsible for freeing the object.

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ new_spherical_transform_iter()

virtual SphericalTransformIter* sc::Integral::new_spherical_transform_iter ( int  l,
int  inv = 0,
int  subl = -1 
)
pure virtual

Return a SphericalTransformIter object.

This factory must have been initialized with a basis set whose maximum angular momentum is greater than or equal to l. The caller is responsible for freeing the object.

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ nuclear()

virtual Ref<OneBodyInt> sc::Integral::nuclear ( )
pure virtual

Return a OneBodyInt that computes the nuclear repulsion integrals.

Note
Charges from the Molecule of basis1 are used. If basis2->molecule() is not not identical to basis1->molecule() (even if not same object), then the charges of both molecules are used.

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ p_cross_nuclear_p()

virtual Ref<OneBodyInt> sc::Integral::p_cross_nuclear_p ( )
virtual

Return a OneBodyInt that computes $\bar{p}\times V\bar{p}$, where $V$ is the nuclear potential.

This is different than most other one body integrals, in that each entry in the integral buffer is a vector of three integrals.

See also
nuclear()

◆ p_dot_nuclear_p()

virtual Ref<OneBodyInt> sc::Integral::p_dot_nuclear_p ( )
virtual

Return a OneBodyInt that computes $\bar{p}\cdot V\bar{p}$, where $V$ is the nuclear potential.

See also
nuclear()

Reimplemented in sc::IntegralV3.

◆ quadrupole()

virtual Ref<OneBodyInt> sc::Integral::quadrupole ( const Ref< IntParamsOrigin > &  O = 0)
pure virtual

Return a OneBodyInt that computes electric quadrupole moment integrals, i.e.

integrals of the $e (\mathbf{r}-\mathbf{O}) \otimes (\mathbf{r}-\mathbf{O})$ operator. The canonical order of integrals in a set is x^2, xy, xz, y^2, yz, z^2.

Parameters
OIntParamsOrigin object that specifies the origin of the multipole expansion; the default is to use the origin of the coordinate system
Note
These are not traceless quadrupole integrals!!
Multiply by -1 to obtain electronic electric quadrupole integrals.

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ r12_k_g12()

template<int NumCenters>
Ref< typename TwoBodyIntEvalType<NumCenters>::value > sc::Integral::r12_k_g12 ( const Ref< IntParamsG12 > &  p,
int  k 
)
inline

Return the evaluator of two-body integrals with kernel $ r_{12}^k g_{12}, \, k=-1,0, $ where $ g_{12} $ is a geminal described by the IntParamsG12 object.

These integrals are, for example, necessary in explicitly correlated methods which use Gaussian geminals.

The evaluator will produce a set of integrals described by TwoBodyNCenterIntDescr<NumCenters,TwoBodyOperSet::R12_0_G12> for k=0 and TwoBodyNCenterIntDescr<4,TwoBodyOperSet::R12_m1_G12> for k=-1.

Template Parameters
NumCentersspecifies the number of centers that carry basis functions. Valid values are 4, 3, and 2.
Note
Implementation of this function is optional. The default implementation will throw FeatureNotImplemented .

◆ save_data_state()

void sc::Integral::save_data_state ( StateOut )
virtual

Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them.

This must be implemented by the derived class if the class has data.

Reimplemented from sc::SavableState.

Reimplemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ set_basis()

virtual void sc::Integral::set_basis ( const Ref< GaussianBasisSet > &  b1,
const Ref< GaussianBasisSet > &  b2 = 0,
const Ref< GaussianBasisSet > &  b3 = 0,
const Ref< GaussianBasisSet > &  b4 = 0 
)
virtual

Set the basis set for each center.

Parameters
[in]b1basis set on center 1; there is no default
[in]b2basis set on center 2; if null, will use b1
[in]b3basis set on center 3; if null, will use b2
[in]b4basis set on center 4; if null, will use b3

Reimplemented in sc::IntegralLibint2, and sc::IntegralV3.

Referenced by sc::compute_obints().

◆ shell_rotation()

ShellRotation sc::Integral::shell_rotation ( int  am,
SymmetryOperation ,
int  pure = 0 
)

Return the ShellRotation object for a shell of the given angular momentum.

Pass nonzero to pure to do solid harmonics.

◆ spherical_transform()

virtual const SphericalTransform* sc::Integral::spherical_transform ( int  l,
int  inv = 0,
int  subl = -1 
)
pure virtual

Return a SphericalTransform object.

This factory must have been initialized with a basis set whose maximum angular momentum is greater than or equal to l. The pointer is only valid while this Integral object is valid.

Implemented in sc::IntegralLibint2, and sc::IntegralV3.

◆ storage_required()

virtual size_t sc::Integral::storage_required ( TwoBodyOper::type  opertype,
TwoBodyIntShape::value  tbinttype,
size_t  deriv_level = 0,
const Ref< GaussianBasisSet > &  b1 = 0,
const Ref< GaussianBasisSet > &  b2 = 0,
const Ref< GaussianBasisSet > &  b3 = 0,
const Ref< GaussianBasisSet > &  b4 = 0 
)
virtual

Reports the approximate amount of memory required, in bytes, to create an evaluator for opertype.

Parameters
opertypethe operator type, TwoBodyOper::type
tbinttypethe integral type, TwoBodyIntShape::value
deriv_levelderivative level
b1basis set on center 1
b2basis set on center 2
b3basis set on center 3
b4basis set on center 4
Returns
number of bytes needed to create an evaluator of the specified type

The documentation for this class was generated from the following file:

Generated at Sun Jan 26 2020 23:24:06 for MPQC 3.0.0-alpha using the documentation package Doxygen 1.8.16.